|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""
|
|
|
|
Train CenterNet and get network model files(.ckpt)
|
|
|
|
"""
|
|
|
|
|
|
|
|
import os
|
|
|
|
import argparse
|
|
|
|
import mindspore.communication.management as D
|
|
|
|
from mindspore.communication.management import get_rank
|
|
|
|
from mindspore import context
|
|
|
|
from mindspore.train.model import Model
|
|
|
|
from mindspore.context import ParallelMode
|
|
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
from mindspore.nn.optim import Adam
|
|
|
|
from mindspore import log as logger
|
|
|
|
from mindspore.common import set_seed
|
|
|
|
from mindspore.profiler import Profiler
|
|
|
|
from src.dataset import COCOHP
|
|
|
|
from src import CenterNetMultiPoseLossCell, CenterNetWithLossScaleCell
|
|
|
|
from src import CenterNetWithoutLossScaleCell
|
|
|
|
from src.utils import LossCallBack, CenterNetPolynomialDecayLR, CenterNetMultiEpochsDecayLR
|
|
|
|
from src.config import dataset_config, net_config, train_config
|
|
|
|
|
|
|
|
_current_dir = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='CenterNet training')
|
|
|
|
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'CPU'],
|
|
|
|
help='device where the code will be implemented. (Default: Ascend)')
|
|
|
|
parser.add_argument("--distribute", type=str, default="false", choices=["true", "false"],
|
|
|
|
help="Run distribute, default is false.")
|
|
|
|
parser.add_argument("--need_profiler", type=str, default="false", choices=["true", "false"],
|
|
|
|
help="Profiling to parsing runtime info, default is false.")
|
|
|
|
parser.add_argument("--profiler_path", type=str, default=" ", help="The path to save profiling data")
|
|
|
|
parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
|
|
|
|
parser.add_argument("--train_steps", type=int, default=-1, help="Training Steps, default is -1,"
|
|
|
|
"i.e. run all steps according to epoch number.")
|
|
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
|
|
|
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
|
|
|
|
parser.add_argument("--enable_save_ckpt", type=str, default="true", choices=["true", "false"],
|
|
|
|
help="Enable save checkpoint, default is true.")
|
|
|
|
parser.add_argument("--do_shuffle", type=str, default="true", choices=["true", "false"],
|
|
|
|
help="Enable shuffle for dataset, default is true.")
|
|
|
|
parser.add_argument("--enable_data_sink", type=str, default="true", choices=["true", "false"],
|
|
|
|
help="Enable data sink, default is true.")
|
|
|
|
parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.")
|
|
|
|
parser.add_argument("--save_checkpoint_path", type=str, default="", help="Save checkpoint path")
|
|
|
|
parser.add_argument("--load_checkpoint_path", type=str, default="", help="Load checkpoint file path")
|
|
|
|
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, default is 1000.")
|
|
|
|
parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
|
|
|
|
parser.add_argument("--mindrecord_dir", type=str, default="", help="Mindrecord dataset files directory")
|
|
|
|
parser.add_argument("--mindrecord_prefix", type=str, default="coco_hp.train.mind",
|
|
|
|
help="Prefix of MindRecord dataset filename.")
|
|
|
|
parser.add_argument("--visual_image", type=str, default="false", help="Visulize the ground truth and predicted image")
|
|
|
|
parser.add_argument("--save_result_dir", type=str, default="", help="The path to save the predict results")
|
|
|
|
|
|
|
|
args_opt = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def _set_parallel_all_reduce_split():
|
|
|
|
"""set centernet all_reduce fusion split"""
|
|
|
|
if net_config.last_level == 5:
|
|
|
|
context.set_auto_parallel_context(all_reduce_fusion_config=[16, 56, 96, 136, 175])
|
|
|
|
elif net_config.last_level == 6:
|
|
|
|
context.set_auto_parallel_context(all_reduce_fusion_config=[18, 59, 100, 141, 182])
|
|
|
|
else:
|
|
|
|
raise ValueError("The total num of allreduced grads for last level = {} is unknown,"
|
|
|
|
"please re-split after known the true value".format(net_config.last_level))
|
|
|
|
|
|
|
|
|
|
|
|
def _get_params_groups(network, optimizer):
|
|
|
|
"""
|
|
|
|
Get param groups
|
|
|
|
"""
|
|
|
|
params = network.trainable_params()
|
|
|
|
decay_params = list(filter(lambda x: not optimizer.decay_filter(x), params))
|
|
|
|
other_params = list(filter(optimizer.decay_filter, params))
|
|
|
|
group_params = [{'params': decay_params, 'weight_decay': optimizer.weight_decay},
|
|
|
|
{'params': other_params, 'weight_decay': 0.0},
|
|
|
|
{'order_params': params}]
|
|
|
|
return group_params
|
|
|
|
|
|
|
|
|
|
|
|
def _get_optimizer(network, dataset_size):
|
|
|
|
"""get optimizer, only support Adam right now."""
|
|
|
|
if train_config.optimizer == 'Adam':
|
|
|
|
group_params = _get_params_groups(network, train_config.Adam)
|
|
|
|
if train_config.lr_schedule == "PolyDecay":
|
|
|
|
lr_schedule = CenterNetPolynomialDecayLR(learning_rate=train_config.PolyDecay.learning_rate,
|
|
|
|
end_learning_rate=train_config.PolyDecay.end_learning_rate,
|
|
|
|
warmup_steps=train_config.PolyDecay.warmup_steps,
|
|
|
|
decay_steps=args_opt.train_steps,
|
|
|
|
power=train_config.PolyDecay.power)
|
|
|
|
optimizer = Adam(group_params, learning_rate=lr_schedule, eps=train_config.PolyDecay.eps, loss_scale=1.0)
|
|
|
|
elif train_config.lr_schedule == "MultiDecay":
|
|
|
|
multi_epochs = train_config.MultiDecay.multi_epochs
|
|
|
|
if not isinstance(multi_epochs, (list, tuple)):
|
|
|
|
raise TypeError("multi_epochs must be list or tuple.")
|
|
|
|
if not multi_epochs:
|
|
|
|
multi_epochs = [args_opt.epoch_size]
|
|
|
|
lr_schedule = CenterNetMultiEpochsDecayLR(learning_rate=train_config.MultiDecay.learning_rate,
|
|
|
|
warmup_steps=train_config.MultiDecay.warmup_steps,
|
|
|
|
multi_epochs=multi_epochs,
|
|
|
|
steps_per_epoch=dataset_size,
|
|
|
|
factor=train_config.MultiDecay.factor)
|
|
|
|
optimizer = Adam(group_params, learning_rate=lr_schedule, eps=train_config.MultiDecay.eps, loss_scale=1.0)
|
|
|
|
else:
|
|
|
|
raise ValueError("Don't support lr_schedule {}, only support [PolynormialDecay, MultiEpochDecay]".
|
|
|
|
format(train_config.optimizer))
|
|
|
|
else:
|
|
|
|
raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, Adam]".
|
|
|
|
format(train_config.optimizer))
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
|
"""training CenterNet"""
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
|
|
|
|
context.set_context(reserve_class_name_in_scope=False)
|
|
|
|
context.set_context(save_graphs=False)
|
|
|
|
|
|
|
|
ckpt_save_dir = args_opt.save_checkpoint_path
|
|
|
|
rank = 0
|
|
|
|
device_num = 1
|
|
|
|
num_workers = 8
|
|
|
|
if args_opt.device_target == "Ascend":
|
|
|
|
context.set_context(enable_auto_mixed_precision=False)
|
|
|
|
context.set_context(device_id=args_opt.device_id)
|
|
|
|
if args_opt.distribute == "true":
|
|
|
|
D.init()
|
|
|
|
device_num = args_opt.device_num
|
|
|
|
rank = args_opt.device_id % device_num
|
|
|
|
ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(get_rank()) + '/'
|
|
|
|
|
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
|
|
|
|
device_num=device_num)
|
|
|
|
_set_parallel_all_reduce_split()
|
|
|
|
else:
|
|
|
|
args_opt.distribute = "false"
|
|
|
|
args_opt.need_profiler = "false"
|
|
|
|
args_opt.enable_data_sink = "false"
|
|
|
|
|
|
|
|
# Start create dataset!
|
|
|
|
# mindrecord files will be generated at args_opt.mindrecord_dir such as centernet.mindrecord0, 1, ... file_num.
|
|
|
|
logger.info("Begin creating dataset for CenterNet")
|
|
|
|
coco = COCOHP(dataset_config, run_mode="train", net_opt=net_config,
|
|
|
|
enable_visual_image=(args_opt.visual_image == "true"), save_path=args_opt.save_result_dir)
|
|
|
|
dataset = coco.create_train_dataset(args_opt.mindrecord_dir, args_opt.mindrecord_prefix,
|
|
|
|
batch_size=train_config.batch_size, device_num=device_num, rank=rank,
|
|
|
|
num_parallel_workers=num_workers, do_shuffle=args_opt.do_shuffle == 'true')
|
|
|
|
dataset_size = dataset.get_dataset_size()
|
|
|
|
logger.info("Create dataset done!")
|
|
|
|
|
|
|
|
net_with_loss = CenterNetMultiPoseLossCell(net_config)
|
|
|
|
|
|
|
|
new_repeat_count = args_opt.epoch_size * dataset_size // args_opt.data_sink_steps
|
|
|
|
if args_opt.train_steps > 0:
|
|
|
|
new_repeat_count = min(new_repeat_count, args_opt.train_steps // args_opt.data_sink_steps)
|
|
|
|
else:
|
|
|
|
args_opt.train_steps = args_opt.epoch_size * dataset_size
|
|
|
|
logger.info("train steps: {}".format(args_opt.train_steps))
|
|
|
|
|
|
|
|
optimizer = _get_optimizer(net_with_loss, dataset_size)
|
|
|
|
|
|
|
|
enable_static_time = args_opt.device_target == "CPU"
|
|
|
|
callback = [TimeMonitor(args_opt.data_sink_steps), LossCallBack(dataset_size, enable_static_time)]
|
|
|
|
if args_opt.enable_save_ckpt == "true" and args_opt.device_id % min(8, device_num) == 0:
|
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
|
|
|
|
keep_checkpoint_max=args_opt.save_checkpoint_num)
|
|
|
|
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_centernet',
|
|
|
|
directory=None if ckpt_save_dir == "" else ckpt_save_dir, config=config_ck)
|
|
|
|
callback.append(ckpoint_cb)
|
|
|
|
|
|
|
|
if args_opt.load_checkpoint_path:
|
|
|
|
param_dict = load_checkpoint(args_opt.load_checkpoint_path)
|
|
|
|
load_param_into_net(net_with_loss, param_dict)
|
|
|
|
if args_opt.device_target == "Ascend":
|
|
|
|
net_with_grads = CenterNetWithLossScaleCell(net_with_loss, optimizer=optimizer,
|
|
|
|
sens=train_config.loss_scale_value)
|
|
|
|
else:
|
|
|
|
net_with_grads = CenterNetWithoutLossScaleCell(net_with_loss, optimizer=optimizer)
|
|
|
|
|
|
|
|
model = Model(net_with_grads)
|
|
|
|
model.train(new_repeat_count, dataset, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == "true"),
|
|
|
|
sink_size=args_opt.data_sink_steps)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
if args_opt.need_profiler == "true":
|
|
|
|
profiler = Profiler(output_path=args_opt.profiler_path)
|
|
|
|
set_seed(0)
|
|
|
|
train()
|
|
|
|
if args_opt.need_profiler == "true":
|
|
|
|
profiler.analyse()
|