You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_conv2d_op.py

73 lines
2.5 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
5 years ago
import pytest
import mindspore.context as context
5 years ago
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
5 years ago
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
5 years ago
class NetConv2d(nn.Cell):
5 years ago
def __init__(self):
super(NetConv2d, self).__init__()
out_channel = 2
kernel_size = 1
self.conv = P.Conv2D(out_channel,
kernel_size,
mode=1,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1)
self.w = Parameter(initializer(
Tensor(np.arange(2 * 3 * 1 * 1).reshape(2, 3, 1, 1).astype(np.float32)), [2, 3, 1, 1]), name='w')
self.x = Parameter(initializer(
Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32)), [1, 3, 3, 3]), name='x')
def construct(self):
return self.conv(self.x, self.w)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_conv2d():
conv2d = NetConv2d()
output = conv2d()
print("================================")
# expect output:
# [[[[ 45. 48. 51.]
# [ 54. 57. 60.]
# [ 63. 66. 69.]]
# [[126. 138. 150.]
# [162. 174. 186.]
# [198. 210. 222.]]]]
5 years ago
expect = np.array([[[[45, 48, 51],
[54, 57, 60],
[63, 66, 69]],
[[126, 138, 150],
[162, 174, 186],
[198, 210, 222]]]]).astype(np.float32)
print(output)
assert (output.asnumpy() == expect).all()