You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/pynative_mode/test_multi_grad.py

208 lines
6.4 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore import context, nn, Tensor, Parameter, ParameterTuple
from mindspore.common import dtype as mstype
from mindspore.ops import composite as C
def setup_module():
context.set_context(mode=context.PYNATIVE_MODE, enable_sparse=False)
class _Grad(nn.Cell):
def __init__(self, grad, network, wrt_params=False, real_inputs_count=None):
super().__init__()
self.network = network
self.grad = grad
self.sens_param = self.grad.sens_param
self.wrt_params = wrt_params
self.real_inputs_count = real_inputs_count
if self.wrt_params:
self.params = ParameterTuple(self.network.trainable_params())
def construct(self, *inputs):
if self.wrt_params:
if self.real_inputs_count is None or self.sens_param is False:
return self.grad(self.network, self.params)(*inputs)
real_inputs = inputs[:self.real_inputs_count]
sense_param_inputs = inputs[self.real_inputs_count:]
return self.grad(self.network, self.params)(*real_inputs, sense_param_inputs)
if self.real_inputs_count is None or self.sens_param is False:
return self.grad(self.network)(*inputs)
real_inputs = inputs[:self.real_inputs_count]
sense_param_inputs = inputs[self.real_inputs_count:]
return self.grad(self.network)(*real_inputs, sense_param_inputs)
class GradOfFirstInput(_Grad):
"""
get grad of first input
"""
def __init__(self, network, sens_param=True, real_inputs_count=None):
super().__init__(grad=C.GradOperation(sens_param=sens_param),
network=network, real_inputs_count=real_inputs_count)
class GradOfAllInputs(_Grad):
"""
get grad of first input
"""
def __init__(self, network, sens_param=True, real_inputs_count=None):
super().__init__(grad=C.GradOperation(get_all=True, sens_param=sens_param),
network=network, real_inputs_count=real_inputs_count)
def test_multi_grad():
class ForwardNetMul(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x, y):
a = x * x
b = y * y
return a * b
class ForwardNetAdd(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x, y):
a = x + x + x
b = y + y
return a * b
mulnet = ForwardNetMul()
addnet = ForwardNetAdd()
x = Tensor(np.ones([32]), dtype=mstype.float32)
y = Tensor(np.ones([32])*2, dtype=mstype.float32)
sens = Tensor(np.ones([32]), dtype=mstype.float32)
mulnet.set_grad()
addnet.set_grad()
out1 = mulnet(x, y)
out2 = addnet(x, y)
grad_mul = GradOfAllInputs(mulnet)
grad_add = GradOfAllInputs(addnet)
grad_mul(x, y, sens)
grad_add(x, y, sens)
def test_multi_same_grad():
class ForwardNetMul(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x, y):
a = x * x
b = y * y
return a * b
class ForwardNetAdd(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x, y):
a = x*3
b = y*2
return a + b
mulnet = ForwardNetMul()
addnet = ForwardNetAdd()
x = Tensor(np.ones([32]), dtype=mstype.float32)
y = Tensor(np.ones([32]), dtype=mstype.float32)
sens = Tensor(np.ones([32]), dtype=mstype.float32)
mulnet.set_grad()
addnet.set_grad()
out1 = mulnet(x, y)
out2 = addnet(x, y)
grad_mul = GradOfAllInputs(mulnet)
grad_add = GradOfFirstInput(mulnet)
grad_mul(x, y, sens)
grad_add(x, y, sens)
def test_net_inner_grad():
class ForwardNetMul(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x, y):
a = x * x
b = y * y
return a * b
class ForwardNetAdd(nn.Cell):
def __init__(self, net):
super().__init__()
self.net = net
def construct(self, x, y):
a = x + x
b = y + y
res = self.net(a, b)
return res
mulnet = ForwardNetMul()
addnet = ForwardNetAdd(mulnet)
x = Tensor(np.ones([32]), dtype=mstype.float32)
y = Tensor(np.ones([32]), dtype=mstype.float32)
sens = Tensor(np.ones([32]), dtype=mstype.float32)
mulnet.set_grad()
addnet.set_grad()
out1 = mulnet(x, y)
out2 = addnet(x, y)
grad_mul = GradOfAllInputs(addnet)
grad_add = GradOfAllInputs(mulnet)
grad_mul(x, y, sens)
grad_add(x, y, sens)
def test_net_inner_first_run_grad():
class ForwardNetMul(nn.Cell):
def __init__(self):
super().__init__()
self.z1 = Parameter(Tensor(np.ones([32])*2, dtype=mstype.float32), name='z1')
def construct(self, x, y):
a = x * self.z1
b = y * y
return a * b
class ForwardNetAdd(nn.Cell):
def __init__(self, net):
super().__init__()
self.net = net
self.z2 = Parameter(Tensor(np.ones([32]), dtype=mstype.float32), name='z2')
self.z3 = Parameter(Tensor(np.ones([32]), dtype=mstype.float32), name='z2')
def construct(self, x, y):
a = x + x*self.z3
b = y + y*self.z2
res = self.net(a, b)
return res
mulnet = ForwardNetMul()
addnet = ForwardNetAdd(mulnet)
x = Tensor(np.ones([32]), dtype=mstype.float32)
y = Tensor(np.ones([32]), dtype=mstype.float32)
sens = Tensor(np.ones([32]), dtype=mstype.float32)
mulnet.set_grad()
addnet.set_grad()
out1 = mulnet(x, y)
out2 = addnet(x, y)
grad_mul = GradOfAllInputs(addnet)
grad_add = GradOfFirstInput(mulnet)
grad_mul(x, y, sens)
grad_add(x, y, sens)