|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import mindspore.context as context
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore.common.parameter import ParameterTuple
|
|
|
|
from mindspore.ops import composite as C
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.ops.composite import GradOperation
|
|
|
|
|
|
|
|
|
|
|
|
class BiasAdd(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(BiasAdd, self).__init__()
|
|
|
|
self.ba = P.BiasAdd()
|
|
|
|
|
|
|
|
def construct(self, x, b):
|
|
|
|
return self.ba(x, b)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_biasadd():
|
|
|
|
x = Tensor(np.array([[0.1, 0.2, 0.3, 0.4],
|
|
|
|
[0.5, 0.6, 0.7, 0.8],
|
|
|
|
[0.9, 1.0, 1.1, 1.2]]).astype(np.float32))
|
|
|
|
b = Tensor(np.array([0.1, 0.2, 0.3, 0.4]).astype(np.float32))
|
|
|
|
expect = np.array([[0.2, 0.4, 0.6, 0.8],
|
|
|
|
[0.6, 0.8, 1.0, 1.2],
|
|
|
|
[1.0, 1.2, 1.4, 1.6]])
|
|
|
|
error = np.ones(shape=[3, 4]) * 1.0e-6
|
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
|
|
ba = BiasAdd()
|
|
|
|
result = ba(x, b)
|
|
|
|
diff = result.asnumpy() - expect
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert np.all(-diff < error)
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
ba = BiasAdd()
|
|
|
|
result = ba(x, b)
|
|
|
|
diff = result.asnumpy() - expect
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert np.all(-diff < error)
|
|
|
|
|
|
|
|
|
|
|
|
class GradData(nn.Cell):
|
|
|
|
def __init__(self, network):
|
|
|
|
super(GradData, self).__init__()
|
|
|
|
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
|
|
|
|
self.network = network
|
|
|
|
|
|
|
|
def construct(self, inputs, output_grad):
|
|
|
|
return self.grad(self.network)(inputs, output_grad)
|
|
|
|
|
|
|
|
|
|
|
|
class GradWeight(nn.Cell):
|
|
|
|
def __init__(self, network):
|
|
|
|
super(GradWeight, self).__init__()
|
|
|
|
self.network = network
|
|
|
|
self.weights = ParameterTuple(network.trainable_params())
|
|
|
|
self.grad = C.GradOperation('grad',
|
|
|
|
get_by_list=True,
|
|
|
|
sens_param=True)
|
|
|
|
|
|
|
|
def construct(self, x, output_grad):
|
|
|
|
weights = self.weights
|
|
|
|
grads = self.grad(self.network, weights)(x, output_grad)
|
|
|
|
return grads
|
|
|
|
|
|
|
|
|
|
|
|
class DenseNet(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(DenseNet, self).__init__()
|
|
|
|
w = np.array([[0.1, 0.8, 0.1, 0.1],
|
|
|
|
[1, 1, 1, 1]]).astype(np.float32)
|
|
|
|
b = np.array([0.3, 0.6]).astype(np.float32)
|
|
|
|
self.dense = nn.Dense(4, 2, weight_init=Tensor(w), bias_init=Tensor(b))
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
return self.dense(x)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_dx():
|
|
|
|
x = np.array([[0.1, 0.2, 0.3, 0.4],
|
|
|
|
[0.1, 0.2, 0.3, 0.4],
|
|
|
|
[0.1, 0.2, 0.3, 0.4]]).astype(np.float32)
|
|
|
|
dy = np.array([[1, 1],
|
|
|
|
[1, 1],
|
|
|
|
[1, 1]]).astype(np.float32)
|
|
|
|
dx_expect = np.array([[1.1, 1.8, 1.1, 1.1],
|
|
|
|
[1.1, 1.8, 1.1, 1.1],
|
|
|
|
[1.1, 1.8, 1.1, 1.1]]).astype(np.float32)
|
|
|
|
error = np.ones(shape=[3, 4]) * 1.0e-6
|
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
|
|
net = GradData(DenseNet())
|
|
|
|
dx = net(Tensor(x), Tensor(dy))
|
|
|
|
diff = dx[0].asnumpy() - dx_expect
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert np.all(-diff < error)
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
net = GradData(DenseNet())
|
|
|
|
dx = net(Tensor(x), Tensor(dy))
|
|
|
|
diff = dx[0].asnumpy() - dx_expect
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert np.all(-diff < error)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_dw():
|
|
|
|
x = np.array([[0.1, 0.2, 0.3, 0.4],
|
|
|
|
[0.1, 0.2, 0.3, 0.4],
|
|
|
|
[0.1, 0.2, 0.3, 0.4]]).astype(np.float32)
|
|
|
|
dy = np.array([[1, 1],
|
|
|
|
[1, 1],
|
|
|
|
[1, 1]]).astype(np.float32)
|
|
|
|
dw_expect = np.array([[0.3, 0.6, 0.9, 1.2],
|
|
|
|
[0.3, 0.6, 0.9, 1.2]]).astype(np.float32)
|
|
|
|
dw_error = np.ones(shape=[2, 4]) * 1.0e-6
|
|
|
|
db_expect = np.array([3, 3]).astype(np.float32)
|
|
|
|
db_error = np.ones(shape=[2]) * 1.0e-6
|
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
|
|
net = GradWeight(DenseNet())
|
|
|
|
dw, db = net(Tensor(x), Tensor(dy))
|
|
|
|
diff = dw.asnumpy() - dw_expect
|
|
|
|
assert np.all(diff < dw_error)
|
|
|
|
assert np.all(-diff < dw_error)
|
|
|
|
diff = db.asnumpy() - db_expect
|
|
|
|
assert np.all(diff < db_error)
|
|
|
|
assert np.all(-diff < db_error)
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
net = GradWeight(DenseNet())
|
|
|
|
dw, db = net(Tensor(x), Tensor(dy))
|
|
|
|
diff = dw.asnumpy() - dw_expect
|
|
|
|
assert np.all(diff < dw_error)
|
|
|
|
assert np.all(-diff < dw_error)
|
|
|
|
diff = db.asnumpy() - db_expect
|
|
|
|
assert np.all(diff < db_error)
|
|
|
|
assert np.all(-diff < db_error)
|
|
|
|
|
|
|
|
|
|
|
|
class Grad(nn.Cell):
|
|
|
|
def __init__(self, network):
|
|
|
|
super(Grad, self).__init__()
|
|
|
|
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
|
|
|
|
self.network = network
|
|
|
|
|
|
|
|
def construct(self, input_, bias, dy):
|
|
|
|
return self.grad(self.network)(input_, bias, dy)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_biasadd_3d():
|
|
|
|
x = Tensor(np.array([[[1, 2, 3, 4, 5, 6, 7, 8],
|
|
|
|
[9, 10, 11, 12, 13, 14, 15, 16],
|
|
|
|
[17, 18, 19, 20, 21, 22, 23, 24],
|
|
|
|
[25, 26, 27, 28, 29, 30, 31, 32]],
|
|
|
|
|
|
|
|
[[33, 34, 35, 36, 37, 38, 39, 40],
|
|
|
|
[41, 42, 43, 44, 45, 46, 47, 48],
|
|
|
|
[49, 50, 51, 52, 53, 54, 55, 56],
|
|
|
|
[57, 58, 59, 60, 61, 62, 63, 64]],
|
|
|
|
|
|
|
|
[[65, 66, 67, 68, 69, 70, 71, 72],
|
|
|
|
[73, 74, 75, 76, 77, 78, 79, 80],
|
|
|
|
[81, 82, 83, 84, 85, 86, 87, 88],
|
|
|
|
[89, 90, 91, 92, 93, 94, 95, 96]]]).astype(np.float32))
|
|
|
|
b = Tensor(np.array([1, 2, 3, 4]).astype(np.float32))
|
|
|
|
dy = Tensor(np.array([[[1, 2, 3, 4, 5, 6, 7, 8],
|
|
|
|
[9, 10, 11, 12, 13, 14, 15, 16],
|
|
|
|
[17, 18, 19, 20, 21, 22, 23, 24],
|
|
|
|
[25, 26, 27, 28, 29, 30, 31, 32]],
|
|
|
|
|
|
|
|
[[33, 34, 35, 36, 37, 38, 39, 40],
|
|
|
|
[41, 42, 43, 44, 45, 46, 47, 48],
|
|
|
|
[49, 50, 51, 52, 53, 54, 55, 56],
|
|
|
|
[57, 58, 59, 60, 61, 62, 63, 64]],
|
|
|
|
|
|
|
|
[[65, 66, 67, 68, 69, 70, 71, 72],
|
|
|
|
[73, 74, 75, 76, 77, 78, 79, 80],
|
|
|
|
[81, 82, 83, 84, 85, 86, 87, 88],
|
|
|
|
[89, 90, 91, 92, 93, 94, 95, 96]]]).astype(np.float32))
|
|
|
|
|
|
|
|
expect = np.array([[[2, 3, 4, 5, 6, 7, 8, 9],
|
|
|
|
[11, 12, 13, 14, 15, 16, 17, 18],
|
|
|
|
[20, 21, 22, 23, 24, 25, 26, 27],
|
|
|
|
[29, 30, 31, 32, 33, 34, 35, 36]],
|
|
|
|
|
|
|
|
[[34, 35, 36, 37, 38, 39, 40, 41],
|
|
|
|
[43, 44, 45, 46, 47, 48, 49, 50],
|
|
|
|
[52, 53, 54, 55, 56, 57, 58, 59],
|
|
|
|
[61, 62, 63, 64, 65, 66, 67, 68]],
|
|
|
|
|
|
|
|
[[66, 67, 68, 69, 70, 71, 72, 73],
|
|
|
|
[75, 76, 77, 78, 79, 80, 81, 82],
|
|
|
|
[84, 85, 86, 87, 88, 89, 90, 91],
|
|
|
|
[93, 94, 95, 96, 97, 98, 99, 100]]])
|
|
|
|
|
|
|
|
error = np.ones(shape=[3, 4, 8]) * 1.0e-6
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
|
|
net = BiasAdd()
|
|
|
|
result = net(x, b)
|
|
|
|
diff = result.asnumpy() - expect
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert np.all(-diff < error)
|
|
|
|
|
|
|
|
net = Grad(net)
|
|
|
|
_, result = net(x, b, dy)
|
|
|
|
expect = np.array([876., 1068., 1260., 1452.])
|
|
|
|
diff = result.asnumpy() - expect
|
|
|
|
error = np.ones(shape=[4]) * 1.0e-6
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert np.all(-diff < error)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_biasadd_4d():
|
|
|
|
x = Tensor(np.array([[[[1, 2, 3, 4],
|
|
|
|
[5, 6, 7, 8],
|
|
|
|
[9, 10, 11, 12],
|
|
|
|
[13, 14, 15, 16]],
|
|
|
|
|
|
|
|
[[17, 18, 19, 20],
|
|
|
|
[21, 22, 23, 24],
|
|
|
|
[25, 26, 27, 28],
|
|
|
|
[29, 30, 31, 32]],
|
|
|
|
|
|
|
|
[[33, 34, 35, 36],
|
|
|
|
[37, 38, 39, 40],
|
|
|
|
[41, 42, 43, 44],
|
|
|
|
[45, 46, 47, 48]]],
|
|
|
|
|
|
|
|
[[[49, 50, 51, 52],
|
|
|
|
[53, 54, 55, 56],
|
|
|
|
[57, 58, 59, 60],
|
|
|
|
[61, 62, 63, 64]],
|
|
|
|
|
|
|
|
[[65, 66, 67, 68],
|
|
|
|
[69, 70, 71, 72],
|
|
|
|
[73, 74, 75, 76],
|
|
|
|
[77, 78, 79, 80]],
|
|
|
|
|
|
|
|
[[81, 82, 83, 84],
|
|
|
|
[85, 86, 87, 88],
|
|
|
|
[89, 90, 91, 92],
|
|
|
|
[93, 94, 95, 96]]]]).astype(np.float32))
|
|
|
|
b = Tensor(np.array([1, 2, 3]).astype(np.float32))
|
|
|
|
dy = Tensor(np.array([[[[1, 2, 3, 4],
|
|
|
|
[5, 6, 7, 8],
|
|
|
|
[9, 10, 11, 12],
|
|
|
|
[13, 14, 15, 16]],
|
|
|
|
|
|
|
|
[[17, 18, 19, 20],
|
|
|
|
[21, 22, 23, 24],
|
|
|
|
[25, 26, 27, 28],
|
|
|
|
[29, 30, 31, 32]],
|
|
|
|
|
|
|
|
[[33, 34, 35, 36],
|
|
|
|
[37, 38, 39, 40],
|
|
|
|
[41, 42, 43, 44],
|
|
|
|
[45, 46, 47, 48]]],
|
|
|
|
|
|
|
|
[[[49, 50, 51, 52],
|
|
|
|
[53, 54, 55, 56],
|
|
|
|
[57, 58, 59, 60],
|
|
|
|
[61, 62, 63, 64]],
|
|
|
|
|
|
|
|
[[65, 66, 67, 68],
|
|
|
|
[69, 70, 71, 72],
|
|
|
|
[73, 74, 75, 76],
|
|
|
|
[77, 78, 79, 80]],
|
|
|
|
|
|
|
|
[[81, 82, 83, 84],
|
|
|
|
[85, 86, 87, 88],
|
|
|
|
[89, 90, 91, 92],
|
|
|
|
[93, 94, 95, 96]]]]).astype(np.float32))
|
|
|
|
|
|
|
|
expect = np.array([[[[2, 3, 4, 5],
|
|
|
|
[6, 7, 8, 9],
|
|
|
|
[10, 11, 12, 13],
|
|
|
|
[14, 15, 16, 17]],
|
|
|
|
|
|
|
|
[[19, 20, 21, 22],
|
|
|
|
[23, 24, 25, 26],
|
|
|
|
[27, 28, 29, 30],
|
|
|
|
[31, 32, 33, 34]],
|
|
|
|
|
|
|
|
[[36, 37, 38, 39],
|
|
|
|
[40, 41, 42, 43],
|
|
|
|
[44, 45, 46, 47],
|
|
|
|
[48, 49, 50, 51]]],
|
|
|
|
|
|
|
|
[[[50, 51, 52, 53],
|
|
|
|
[54, 55, 56, 57],
|
|
|
|
[58, 59, 60, 61],
|
|
|
|
[62, 63, 64, 65]],
|
|
|
|
|
|
|
|
[[67, 68, 69, 70],
|
|
|
|
[71, 72, 73, 74],
|
|
|
|
[75, 76, 77, 78],
|
|
|
|
[79, 80, 81, 82]],
|
|
|
|
|
|
|
|
[[84, 85, 86, 87],
|
|
|
|
[88, 89, 90, 91],
|
|
|
|
[92, 93, 94, 95],
|
|
|
|
[96, 97, 98, 99]]]])
|
|
|
|
error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-6
|
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
|
|
ba = BiasAdd()
|
|
|
|
result = ba(x, b)
|
|
|
|
diff = result.asnumpy() - expect
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert np.all(-diff < error)
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
net = BiasAdd()
|
|
|
|
result = net(x, b)
|
|
|
|
diff = result.asnumpy() - expect
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert np.all(-diff < error)
|
|
|
|
|
|
|
|
net = Grad(net)
|
|
|
|
_, result = net(x, b, dy)
|
|
|
|
expect = np.array([1040., 1552., 2064.])
|
|
|
|
diff = result.asnumpy() - expect
|
|
|
|
error = np.ones(shape=[3]) * 1.0e-6
|
|
|
|
assert np.all(diff < error)
|
|
|
|
assert np.all(-diff < error)
|