|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""
|
|
|
|
@File : test_parse.py
|
|
|
|
@Author:
|
|
|
|
@Date : 2019-01-23 17:13
|
|
|
|
@Desc :
|
|
|
|
"""
|
|
|
|
import logging
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import mindspore as ms
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore.common.api import ms_function, _executor
|
|
|
|
from mindspore.ops.functional import tensor_add
|
|
|
|
from ...ut_filter import non_graph_engine
|
|
|
|
|
|
|
|
# pylint: disable=W0613
|
|
|
|
# W0613: unused-argument
|
|
|
|
|
|
|
|
|
|
|
|
log = logging.getLogger("test")
|
|
|
|
log.setLevel(level=logging.ERROR)
|
|
|
|
|
|
|
|
|
|
|
|
# Test case: use the parse obj interface use default parameter
|
|
|
|
class Net(nn.Cell):
|
|
|
|
""" Net definition """
|
|
|
|
|
|
|
|
def __init__(self, dim):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.softmax1 = nn.Softmax(dim)
|
|
|
|
self.softmax2 = nn.Softmax(dim + 1)
|
|
|
|
|
|
|
|
def construct(self, input_data, input1=ms.Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))):
|
|
|
|
return self.softmax1(input_data)
|
|
|
|
|
|
|
|
|
|
|
|
@non_graph_engine
|
|
|
|
def test_parse_defalut_parameter_case2():
|
|
|
|
""" test_parse_defalut_parameter_case2 """
|
|
|
|
log.debug("begin test_parse_defalut_parameter_case2")
|
|
|
|
net = Net(0)
|
|
|
|
npd = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
|
|
|
|
log.debug("input value is: %r", npd)
|
|
|
|
input_data = ms.Tensor(npd)
|
|
|
|
input_data.set_dtype(ms.float32)
|
|
|
|
|
|
|
|
log.debug("start run")
|
|
|
|
output = net(input_data)
|
|
|
|
|
|
|
|
value = output.asnumpy()
|
|
|
|
log.debug("output value = %r", value)
|
|
|
|
|
|
|
|
|
|
|
|
# Test case: use the variable parameter for parse object
|
|
|
|
class Net1(nn.Cell):
|
|
|
|
""" Net1 definition """
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super(Net1, self).__init__()
|
|
|
|
|
|
|
|
def construct(self, *args):
|
|
|
|
x = args[0]
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def test_var_parameter_case2():
|
|
|
|
""" test_var_parameter_case2 """
|
|
|
|
log.debug("begin test_var_parameter_case2")
|
|
|
|
net = Net1()
|
|
|
|
npd = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
|
|
|
|
log.debug("input value is: %r", npd)
|
|
|
|
input_data = ms.Tensor(npd)
|
|
|
|
input_data.set_dtype(ms.float32)
|
|
|
|
|
|
|
|
np1 = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
|
|
input1 = ms.Tensor(np1)
|
|
|
|
np2 = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
|
|
input2 = ms.Tensor(np2)
|
|
|
|
|
|
|
|
_executor.compile(net, input_data, input1, input2)
|
|
|
|
|
|
|
|
|
|
|
|
# Test case: test the global flag
|
|
|
|
g_x = Tensor(np.ones([3, 3]).astype(np.float32))
|
|
|
|
|
|
|
|
|
|
|
|
@ms_function
|
|
|
|
def tensor_add_global(x):
|
|
|
|
""" tensor_add_global """
|
|
|
|
global g_x
|
|
|
|
res = tensor_add(x, g_x)
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
@non_graph_engine
|
|
|
|
def test_global_flag():
|
|
|
|
""" test_global_flag """
|
|
|
|
log.debug("begin test_global_flag")
|
|
|
|
x = Tensor(np.ones([3, 3]).astype(np.float32))
|
|
|
|
res = tensor_add_global(x)
|
|
|
|
log.debug("finished test_global_flag, ret = %r", res)
|
|
|
|
|
|
|
|
|
|
|
|
class NetWithNDarray(nn.Cell):
|
|
|
|
""" NetWithNDarray definition """
|
|
|
|
|
|
|
|
def __init__(self, dim):
|
|
|
|
super(NetWithNDarray, self).__init__()
|
|
|
|
self.softmax = nn.Softmax(dim)
|
|
|
|
self.x = ms.Tensor(np.ones(shape=(1)).astype(np.float32))
|
|
|
|
|
|
|
|
def construct(self, input_data):
|
|
|
|
return self.softmax(input_data) * self.x
|
|
|
|
|
|
|
|
|
|
|
|
@non_graph_engine
|
|
|
|
def test_net_with_ndarray():
|
|
|
|
""" test_net_with_ndarray """
|
|
|
|
net = NetWithNDarray(0)
|
|
|
|
input_data = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
|
|
|
|
|
|
|
|
net(ms.Tensor(input_data))
|