You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
1.8 KiB
54 lines
1.8 KiB
5 years ago
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import pytest
|
||
|
from mindspore import Tensor
|
||
|
from mindspore.ops import operations as P
|
||
|
from mindspore.ops.operations import _grad_ops as G
|
||
|
import mindspore.nn as nn
|
||
|
import numpy as np
|
||
|
import mindspore.context as context
|
||
|
|
||
|
|
||
|
class NetReLU6Grad(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(NetReLU6Grad, self).__init__()
|
||
|
self.relu6_grad = G.ReLU6Grad()
|
||
|
|
||
|
def construct(self, x, dy):
|
||
|
return self.relu6_grad(dy, x)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_relu6_grad():
|
||
|
x = Tensor(np.array([[[[-1, 1, 10],
|
||
|
[5.9, 6.1, 6],
|
||
|
[10, 1, -1]]]]).astype(np.float32))
|
||
|
dy = Tensor(np.array([[[[1, 1, 1],
|
||
|
[1, 1, 1],
|
||
|
[1, 1, 1]]]]).astype(np.float32))
|
||
|
expect = np.array([[[[0, 1, 0, ],
|
||
|
[1, 0, 0, ],
|
||
|
[0, 1, 0, ]]]]).astype(np.float32)
|
||
|
error = np.ones(shape=[3, 3]) * 1.0e-6
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
relu6_grad = NetReLU6Grad()
|
||
|
output = relu6_grad(x, dy)
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(np.abs(diff) < error)
|