You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
3.7 KiB
94 lines
3.7 KiB
5 years ago
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import pytest
|
||
|
import numpy as np
|
||
|
from mindspore import Tensor
|
||
|
from mindspore.ops import operations as P
|
||
|
import mindspore.nn as nn
|
||
|
import mindspore.context as context
|
||
|
from mindspore.common.api import ms_function
|
||
|
|
||
|
context.set_context(device_target="CPU")
|
||
|
|
||
|
|
||
|
class NetReduce(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(NetReduce, self).__init__()
|
||
|
self.axis0 = 0
|
||
|
self.axis1 = 1
|
||
|
self.axis2 = -1
|
||
|
self.axis3 = (0, 1)
|
||
|
self.axis4 = (0, 1, 2)
|
||
|
self.reduce_mean = P.ReduceMean(False)
|
||
|
self.reduce_sum = P.ReduceSum(False)
|
||
|
self.reduce_max = P.ReduceMax(False)
|
||
|
|
||
|
@ms_function
|
||
|
def construct(self, indice):
|
||
|
return (self.reduce_mean(indice, self.axis0),
|
||
|
self.reduce_mean(indice, self.axis1),
|
||
|
self.reduce_mean(indice, self.axis2),
|
||
|
self.reduce_mean(indice, self.axis3),
|
||
|
self.reduce_mean(indice, self.axis4),
|
||
|
self.reduce_sum(indice, self.axis0),
|
||
|
self.reduce_sum(indice, self.axis2),
|
||
|
self.reduce_max(indice, self.axis0),
|
||
|
self.reduce_max(indice, self.axis2))
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_reduce():
|
||
|
reduce = NetReduce()
|
||
|
indice = Tensor(np.array([
|
||
|
[[0., 2., 1., 4., 0., 2.], [3., 1., 2., 2., 4., 0.]],
|
||
|
[[2., 0., 1., 5., 0., 1.], [1., 0., 0., 4., 4., 3.]],
|
||
|
[[4., 1., 4., 0., 0., 0.], [2., 5., 1., 0., 1., 3.]]
|
||
|
]).astype(np.float32))
|
||
|
output = reduce(indice)
|
||
|
print(output[0])
|
||
|
print(output[1])
|
||
|
print(output[2])
|
||
|
print(output[3])
|
||
|
print(output[4])
|
||
|
print(output[5])
|
||
|
print(output[6])
|
||
|
print(output[7])
|
||
|
print(output[8])
|
||
|
expect_0 = np.array([[2., 1., 2., 3., 0., 1], [2., 2., 1., 2., 3., 2.]]).astype(np.float32)
|
||
|
expect_1 = np.array([[1.5, 1.5, 1.5, 3., 2., 1.], [1.5, 0., 0.5, 4.5, 2., 2.], [3., 3., 2.5, 0., 0.5, 1.5]]).astype(
|
||
|
np.float32)
|
||
|
expect_2 = np.array([[1.5, 2.], [1.5, 2.], [1.5, 2.]]).astype(np.float32)
|
||
|
expect_3 = np.array([2, 1.5, 1.5, 2.5, 1.5, 1.5]).astype(np.float32)
|
||
|
expect_4 = np.array([1.75]).astype(np.float32)
|
||
|
expect_5 = np.array([[6., 3., 6., 9., 0., 3.], [6., 6., 3., 6., 9., 6.]]).astype(np.float32)
|
||
|
expect_6 = np.array([[9., 12.], [9., 12.], [9., 12.]]).astype(np.float32)
|
||
|
expect_7 = np.array([[4., 2., 4., 5., 0., 2.], [3., 5., 2., 4., 4., 3.]]).astype(np.float32)
|
||
|
expect_8 = np.array([[4., 4.], [5., 4.], [4., 5.]]).astype(np.float32)
|
||
|
assert (output[0].asnumpy() == expect_0).all()
|
||
|
assert (output[1].asnumpy() == expect_1).all()
|
||
|
assert (output[2].asnumpy() == expect_2).all()
|
||
|
assert (output[3].asnumpy() == expect_3).all()
|
||
|
assert (output[4].asnumpy() == expect_4).all()
|
||
|
assert (output[5].asnumpy() == expect_5).all()
|
||
|
assert (output[6].asnumpy() == expect_6).all()
|
||
|
assert (output[7].asnumpy() == expect_7).all()
|
||
|
assert (output[8].asnumpy() == expect_8).all()
|
||
|
|
||
|
|
||
|
test_reduce()
|