You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_dataset_interface.py

173 lines
5.8 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
5 years ago
import mindspore as ms
import mindspore.nn as nn
5 years ago
from mindspore import Tensor
from mindspore import context
from mindspore.common.parameter import Parameter, ParameterTuple
5 years ago
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import composite as C, functional as F, operations as P
from mindspore.train import Model, ParallelMode
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from tests.dataset_mock import MindData
context.set_context(mode=context.GRAPH_MODE)
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class AllToAllNet(nn.Cell):
def __init__(self, strategy1):
super(AllToAllNet, self).__init__()
self.matmul = P.MatMul().set_strategy(((1, 1), (1, 8)))
self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight")
self.transpose1 = P.Transpose().set_strategy(strategy1)
def construct(self, x):
x = self.matmul(x, self.matmul_weight)
x = self.transpose1(x, (1, 0))
return x
def all_to_all_net(strategy1):
return AllToAllNet(strategy1=strategy1)
def loss_scale_manager_common(strategy1):
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8)
predict = Tensor(np.ones([32, 128]), dtype=ms.float32)
label = Tensor(np.ones([32]), dtype=ms.int32)
dataset = Dataset(predict, label, 2)
net = all_to_all_net(strategy1)
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
loss.softmax_cross_entropy.set_strategy(((8, 1), (8, 1)))
opt = Momentum(net.trainable_params(), learning_rate, momentum)
scale_manager = DynamicLossScaleManager(32, 2, 2000)
model = Model(net, loss, opt, loss_scale_manager=scale_manager)
# if no GE exists, outputs = self._train_network(*next_element) outputs inputs tensor.
try:
model.train(epoch_size, dataset, dataset_sink_mode=False)
except TypeError:
pass
else:
assert False
def fixme_test_dataset_interface_sens_scalar():
# With error: "The type of sens node is not Tensor or Parameter, it is unsupported now."
5 years ago
strategy1 = ((8, 1),)
loss_scale_manager_common(strategy1)
class TrainOneStepCell(nn.Cell):
def __init__(self, network, optimizer):
super(TrainOneStepCell, self).__init__(auto_prefix=False)
self.network = network
self.network.add_flags(defer_inline=True)
self.weights = ParameterTuple(network.trainable_params())
self.optimizer = optimizer
self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
def construct(self, data, sens):
weights = self.weights
loss = self.network(data)
grads = self.grad(self.network, weights)(data, sens)
return F.depend(loss, self.optimizer(grads))
def loss_scale_manager_sens(strategy1, sens):
learning_rate = 0.1
momentum = 0.9
device_num = 8
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
net = all_to_all_net(strategy1)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
train_net = TrainOneStepCell(net, opt)
train_net.set_train()
train_net(predict, sens)
def test_dataset_interface_sens_shape_not_equal_loss():
5 years ago
strategy1 = ((8, 1),)
sens = Tensor(np.ones([256, 1024]), dtype=ms.float32)
try:
loss_scale_manager_sens(strategy1, sens)
except ValueError:
pass
except TypeError:
pass
except RuntimeError:
pass
def test_dataset_interface_sens_shape_equal_loss():
5 years ago
strategy1 = ((4, 2),)
sens = Tensor(np.ones([256, 256]), dtype=ms.float32)
loss_scale_manager_sens(strategy1, sens)
def test_input_not_in_parameter_layotu_dict():
class Net(nn.Cell):
def __init__(self, strategy1):
super(Net, self).__init__()
self.matmul = P.MatMul().set_strategy(((1, 1), (1, 8)))
self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight")
self.transpose1 = P.Transpose().set_strategy(strategy1)
def construct(self, x):
x = self.matmul(x, self.matmul_weight)
x = self.transpose1(x, (1, 0))
return x
5 years ago
strategy1 = ((8, 1),)
device_num = 8
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
net = Net(strategy1)
net.set_train()
net(predict)