You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
10 KiB
223 lines
10 KiB
5 years ago
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
"""Aggregator."""
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore.ops import operations as P
|
||
|
from mindspore.ops import functional as F
|
||
|
from mindspore._extends import cell_attr_register
|
||
|
from mindspore import Tensor, Parameter
|
||
|
from mindspore.common.initializer import initializer
|
||
|
from mindspore._checkparam import check_int_positive, check_bool
|
||
|
from mindspore.nn.layer.activation import get_activation
|
||
|
|
||
|
|
||
|
class GNNFeatureTransform(nn.Cell):
|
||
|
r"""
|
||
|
The GNN featuren transform layer for input.
|
||
|
|
||
|
Applies linear transformation for the input feature. This layer implements the operation as:
|
||
|
|
||
|
.. math::
|
||
|
\text{outputs} = \text{inputs} * \text{kernel} + \text{bias},
|
||
|
|
||
|
where :math:`\text{activation}` is the activation function passed as the activation
|
||
|
argument (if passed in),:math:`\text{activation}` is a weight matrix with the same
|
||
|
data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector
|
||
|
with the same data type as the inputs created by the layer (only if has_bias is True).
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): The number of channels in the input space.
|
||
|
out_channels (int): The number of channels in the output space.
|
||
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
|
||
|
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
|
||
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
||
|
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
|
||
|
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If weight_init or bias_init shape is incorrect.
|
||
|
|
||
|
Inputs:
|
||
|
- **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(*B, N, C)`,
|
||
|
where :math:`*B` represents the batch size which can be multidimensional, :math:`N` and :math:`C` are the
|
||
|
size of the last two dimensions. If `transpose_a` is True, its shape should be :math:`(*B, C, N)`.
|
||
|
|
||
|
Outputs:
|
||
|
Tensor, the shape of the output tensor is :math:`(*B, N, M)`.
|
||
|
|
||
|
Examples:
|
||
|
>>> net = nn.Dense(3, 4)
|
||
|
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
|
||
|
>>> net(input)
|
||
|
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
|
||
|
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
|
||
|
"""
|
||
|
@cell_attr_register(attrs=['has_bias', 'activation'])
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
weight_init='normal',
|
||
|
bias_init='zeros',
|
||
|
has_bias=True):
|
||
|
super(GNNFeatureTransform, self).__init__()
|
||
|
self.in_channels = check_int_positive(in_channels)
|
||
|
self.out_channels = check_int_positive(out_channels)
|
||
|
self.has_bias = check_bool(has_bias)
|
||
|
|
||
|
if isinstance(weight_init, Tensor):
|
||
|
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
|
||
|
weight_init.shape()[1] != in_channels:
|
||
|
raise ValueError("weight_init shape error")
|
||
|
|
||
|
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
||
|
|
||
|
if self.has_bias:
|
||
|
if isinstance(bias_init, Tensor):
|
||
|
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
|
||
|
raise ValueError("bias_init shape error")
|
||
|
|
||
|
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
||
|
|
||
|
self.matmul = P.MatMul(transpose_b=True)
|
||
|
self.bias_add = P.BiasAdd()
|
||
|
|
||
|
def construct(self, x):
|
||
|
tensor_shape = F.shape(x)
|
||
|
input_feature = F.reshape(x, (tensor_shape[0] * tensor_shape[1], tensor_shape[2]))
|
||
|
output = self.matmul(input_feature, self.weight)
|
||
|
if self.has_bias:
|
||
|
output = self.bias_add(output, self.bias)
|
||
|
output = F.reshape(output, (tensor_shape[0], tensor_shape[1], self.out_channels))
|
||
|
return output
|
||
|
|
||
|
def extend_repr(self):
|
||
|
str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \
|
||
|
.format(self.in_channels, self.out_channels, self.weight, self.has_bias)
|
||
|
if self.has_bias:
|
||
|
str_info = str_info + ', bias={}'.format(self.bias)
|
||
|
|
||
|
return str_info
|
||
|
|
||
|
|
||
|
class _BaseAggregator(nn.Cell):
|
||
|
"""
|
||
|
Base Aggregator of GNN
|
||
|
|
||
|
Args:
|
||
|
feature_in_dim (int): Node or edge input feature dim.
|
||
|
feature_out_dim (int): Node or edge outpout feature dim.
|
||
|
use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True
|
||
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
|
||
|
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
|
||
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
||
|
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
|
||
|
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
||
|
dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None.
|
||
|
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
|
||
|
|
||
|
Examples:
|
||
|
>>> class MyAggregator(_BaseAggregator):
|
||
|
>>> def __init__(self):
|
||
|
>>> super(MyAggregator, self).__init__(self, feature_in_dim, feature_out_dim)
|
||
|
>>> self.reduce_mean = P.ReduceSum()
|
||
|
>>>
|
||
|
>>> def construct(self, x):
|
||
|
>>> return self.reduce_mean(x, 1)
|
||
|
"""
|
||
|
def __init__(self,
|
||
|
feature_in_dim,
|
||
|
feature_out_dim,
|
||
|
use_fc=True,
|
||
|
weight_init="normal",
|
||
|
bias_init="zeros",
|
||
|
has_bias=True,
|
||
|
dropout_ratio=None,
|
||
|
activation=None):
|
||
|
super(_BaseAggregator, self).__init__()
|
||
|
self.in_dim = feature_in_dim
|
||
|
self.out_dim = feature_out_dim
|
||
|
self.use_fc = use_fc
|
||
|
if self.use_fc:
|
||
|
self.weight_init = weight_init
|
||
|
self.bias_init = bias_init
|
||
|
self.has_bias = has_bias
|
||
|
self.fc = GNNFeatureTransform(self.in_dim,
|
||
|
self.out_dim,
|
||
|
weight_init=self.weight_init,
|
||
|
bias_init=self.bias_init,
|
||
|
has_bias=self.has_bias)
|
||
|
self.dropout_ratio = dropout_ratio
|
||
|
if self.dropout_ratio is not None:
|
||
|
self.dropout = nn.Dropout(keep_prob=self.dropout_ratio)
|
||
|
self.dropout_flag = self.dropout_ratio is not None
|
||
|
self.activation = get_activation(activation)
|
||
|
self.activation_flag = self.activation is not None
|
||
|
|
||
|
def construct(self, **kward):
|
||
|
"""Must be overridden by all subclasses."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
class MeanAggregator(_BaseAggregator):
|
||
|
"""
|
||
|
Mean Aggregator of GNN
|
||
|
|
||
|
Args:
|
||
|
feature_in_dim (int): Node or edge input feature dim.
|
||
|
feature_out_dim (int): Node or edge outpout feature dim.
|
||
|
use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True
|
||
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
|
||
|
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
|
||
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
||
|
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
|
||
|
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
||
|
dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None.
|
||
|
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
|
||
|
|
||
|
Examples:
|
||
|
>>> net = MeanAggregator(32, 64, activation="relu", dropout=0.5)
|
||
|
>>> input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtypy=np.float32))
|
||
|
>>> output = net(input_data)
|
||
|
"""
|
||
|
def __init__(self,
|
||
|
feature_in_dim,
|
||
|
feature_out_dim,
|
||
|
use_fc=True,
|
||
|
weight_init="normal",
|
||
|
bias_init="zeros",
|
||
|
has_bias=True,
|
||
|
dropout_ratio=None,
|
||
|
activation=None):
|
||
|
super(MeanAggregator, self).__init__(
|
||
|
feature_in_dim,
|
||
|
feature_out_dim,
|
||
|
use_fc=True,
|
||
|
weight_init="normal",
|
||
|
bias_init="zeros",
|
||
|
has_bias=True,
|
||
|
dropout_ratio=None,
|
||
|
activation=None)
|
||
|
self.reduce_mean = P.ReduceMean(keep_dims=False)
|
||
|
|
||
|
def construct(self, input_feature):
|
||
|
if self.use_fc:
|
||
|
input_feature = self.fc(input_feature)
|
||
|
if self.dropout_flag:
|
||
|
input_feature = self.dropout(input_feature)
|
||
|
if self.activation_flag:
|
||
|
input_feature = self.activation(input_feature)
|
||
|
output_feature = self.reduce_mean(input_feature, 1)
|
||
|
return output_feature
|