|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import mindspore.context as context
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore.ops import composite as C
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
|
|
|
|
class TanhNet(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(TanhNet, self).__init__()
|
|
|
|
self.tanh = P.Tanh()
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
return self.tanh(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Grad(nn.Cell):
|
|
|
|
def __init__(self, network):
|
|
|
|
super(Grad, self).__init__()
|
|
|
|
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
|
|
|
|
self.network = network
|
|
|
|
|
|
|
|
def construct(self, input_data, sens):
|
|
|
|
gout = self.grad(self.network)(input_data, sens)
|
|
|
|
return gout
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_Tanh():
|
|
|
|
x_np = np.array(
|
|
|
|
[[0.28522366, 0.38033979, 1.54657853, -0.98530175, -0.54365635, 0.12652203, -1.33449938, -0.27737698],
|
|
|
|
[2.06282293, 0.84635078, 0.16628414, -0.91823183, -0.72023044, -0.09147043, -0.04166984, -1.5664763],
|
|
|
|
[-0.17157249, 0.44260951, -0.6683391, 1.13142613, 1.5536937, -0.32799768, -0.20016545, 0.06773927]],
|
|
|
|
dtype=np.float32)
|
|
|
|
dy_np = np.array(
|
|
|
|
[[0.44969849, -0.187879, -0.64300827, 1.36638774, 0.89930276, -0.23835229, -0.67771854, -1.88984999],
|
|
|
|
[2.00418801, 2.33336475, 0.00241747, 1.31558685, 0.06768817, -2.23008804, -0.26818366, -1.26873401],
|
|
|
|
[1.83694105, 0.5339005, 0.51117424, 0.49202378, -0.83297819, -0.71001219, 0.18913512, 0.65580389]],
|
|
|
|
dtype=np.float32)
|
|
|
|
|
|
|
|
x_ms = Tensor(x_np)
|
|
|
|
dy_ms = Tensor(dy_np)
|
|
|
|
|
|
|
|
net = TanhNet()
|
|
|
|
grad = Grad(net)
|
|
|
|
output = grad(x_ms, dy_ms)
|
|
|
|
|
|
|
|
expect = [[0.41501077, -0.16312202, -0.10675912, 0.58678646, 0.67828224, -0.23457714, -0.1643468, -1.75159405],
|
|
|
|
[0.12541081, 1.2251587, 0.00235184, 0.62396731, 0.04191568, -2.21153283, -0.26771853, -0.20311764],
|
|
|
|
[1.78391056, 0.44159236, 0.33690308, 0.16800483, -0.13651318, -0.63878956, 0.18175511, 0.65280384]]
|
|
|
|
|
|
|
|
assert np.allclose(output[0].asnumpy(), expect)
|