parent
f894fa5b86
commit
01f5da0a14
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,210 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for Poisson distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore import dtype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Prob(nn.Cell):
|
||||
"""
|
||||
Test class: probability of Poisson distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Prob, self).__init__()
|
||||
self.p = msd.Poisson([0.5], dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.p.prob(x_)
|
||||
|
||||
def test_pdf():
|
||||
"""
|
||||
Test pdf.
|
||||
"""
|
||||
poisson_benchmark = stats.poisson(mu=0.5)
|
||||
expect_pdf = poisson_benchmark.pmf([-1.0, 0.0, 1.0]).astype(np.float32)
|
||||
pdf = Prob()
|
||||
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
output = pdf(x_)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
|
||||
|
||||
class LogProb(nn.Cell):
|
||||
"""
|
||||
Test class: log probability of Poisson distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogProb, self).__init__()
|
||||
self.p = msd.Poisson(0.5, dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.p.log_prob(x_)
|
||||
|
||||
def test_log_likelihood():
|
||||
"""
|
||||
Test log_pdf.
|
||||
"""
|
||||
poisson_benchmark = stats.poisson(mu=0.5)
|
||||
expect_logpdf = poisson_benchmark.logpmf([1.0, 2.0]).astype(np.float32)
|
||||
logprob = LogProb()
|
||||
x_ = Tensor(np.array([1.0, 2.0]).astype(np.float32), dtype=dtype.float32)
|
||||
output = logprob(x_)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
|
||||
|
||||
class Basics(nn.Cell):
|
||||
"""
|
||||
Test class: mean/sd/mode of Poisson distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Basics, self).__init__()
|
||||
self.p = msd.Poisson([1.44], dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
return self.p.mean(), self.p.sd(), self.p.mode()
|
||||
|
||||
def test_basics():
|
||||
"""
|
||||
Test mean/standard/mode deviation.
|
||||
"""
|
||||
basics = Basics()
|
||||
mean, sd, mode = basics()
|
||||
expect_mean = 1.44
|
||||
expect_sd = 1.2
|
||||
expect_mode = 1
|
||||
tol = 1e-6
|
||||
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
|
||||
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
|
||||
assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
|
||||
|
||||
class Sampling(nn.Cell):
|
||||
"""
|
||||
Test class: sample of Poisson distribution.
|
||||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Sampling, self).__init__()
|
||||
self.p = msd.Poisson([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, rate=None):
|
||||
return self.p.sample(self.shape, rate)
|
||||
|
||||
def test_sample():
|
||||
"""
|
||||
Test sample.
|
||||
"""
|
||||
shape = (2, 3)
|
||||
seed = 10
|
||||
rate = Tensor([1.0, 2.0, 3.0], dtype=dtype.float32)
|
||||
sample = Sampling(shape, seed=seed)
|
||||
output = sample(rate)
|
||||
assert output.shape == (2, 3, 3)
|
||||
|
||||
class CDF(nn.Cell):
|
||||
"""
|
||||
Test class: cdf of Poisson distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(CDF, self).__init__()
|
||||
self.p = msd.Poisson([0.5], dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.p.cdf(x_)
|
||||
|
||||
def test_cdf():
|
||||
"""
|
||||
Test cdf.
|
||||
"""
|
||||
poisson_benchmark = stats.poisson(mu=0.5)
|
||||
expect_cdf = poisson_benchmark.cdf([-1.0, 0.0, 1.0]).astype(np.float32)
|
||||
cdf = CDF()
|
||||
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
output = cdf(x_)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
|
||||
|
||||
class LogCDF(nn.Cell):
|
||||
"""
|
||||
Test class: log_cdf of Poisson distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogCDF, self).__init__()
|
||||
self.p = msd.Poisson([0.5], dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.p.log_cdf(x_)
|
||||
|
||||
def test_log_cdf():
|
||||
"""
|
||||
Test log_cdf.
|
||||
"""
|
||||
poisson_benchmark = stats.poisson(mu=0.5)
|
||||
expect_logcdf = poisson_benchmark.logcdf([0.5, 1.0, 2.5]).astype(np.float32)
|
||||
logcdf = LogCDF()
|
||||
x_ = Tensor(np.array([0.5, 1.0, 2.5]).astype(np.float32), dtype=dtype.float32)
|
||||
output = logcdf(x_)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
|
||||
|
||||
class SF(nn.Cell):
|
||||
"""
|
||||
Test class: survival function of Poisson distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(SF, self).__init__()
|
||||
self.p = msd.Poisson(0.5, dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.p.survival_function(x_)
|
||||
|
||||
def test_survival():
|
||||
"""
|
||||
Test survival function.
|
||||
"""
|
||||
poisson_benchmark = stats.poisson(mu=0.5)
|
||||
expect_survival = poisson_benchmark.sf([-1.0, 0.0, 1.0]).astype(np.float32)
|
||||
survival = SF()
|
||||
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
output = survival(x_)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
|
||||
|
||||
class LogSF(nn.Cell):
|
||||
"""
|
||||
Test class: log survival function of Poisson distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogSF, self).__init__()
|
||||
self.p = msd.Poisson(0.5, dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.p.log_survival(x_)
|
||||
|
||||
def test_log_survival():
|
||||
"""
|
||||
Test log survival function.
|
||||
"""
|
||||
poisson_benchmark = stats.poisson(mu=0.5)
|
||||
expect_logsurvival = poisson_benchmark.logsf([-1.0, 0.0, 1.0]).astype(np.float32)
|
||||
logsurvival = LogSF()
|
||||
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
output = logsurvival(x_)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_logsurvival) < tol).all()
|
@ -0,0 +1,154 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.probability.distribution.Poisson.
|
||||
"""
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
def test_arguments():
|
||||
"""
|
||||
Args passing during initialization.
|
||||
"""
|
||||
p = msd.Poisson()
|
||||
assert isinstance(p, msd.Distribution)
|
||||
p = msd.Poisson([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
|
||||
assert isinstance(p, msd.Distribution)
|
||||
|
||||
def test_type():
|
||||
with pytest.raises(TypeError):
|
||||
msd.Poisson([0.1], dtype=dtype.bool_)
|
||||
|
||||
def test_name():
|
||||
with pytest.raises(TypeError):
|
||||
msd.Poisson([0.1], name=1.0)
|
||||
|
||||
def test_seed():
|
||||
with pytest.raises(TypeError):
|
||||
msd.Poisson([0.1], seed='seed')
|
||||
|
||||
def test_rate():
|
||||
"""
|
||||
Invalid rate.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
msd.Poisson([-0.1], dtype=dtype.float32)
|
||||
with pytest.raises(ValueError):
|
||||
msd.Poisson([0.0], dtype=dtype.float32)
|
||||
|
||||
class PoissonProb(nn.Cell):
|
||||
"""
|
||||
Poisson distribution: initialize with rate.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(PoissonProb, self).__init__()
|
||||
self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.p.prob(value)
|
||||
log_prob = self.p.log_prob(value)
|
||||
cdf = self.p.cdf(value)
|
||||
log_cdf = self.p.log_cdf(value)
|
||||
sf = self.p.survival_function(value)
|
||||
log_sf = self.p.log_survival(value)
|
||||
return prob + log_prob + cdf + log_cdf + sf + log_sf
|
||||
|
||||
def test_poisson_prob():
|
||||
"""
|
||||
Test probability functions: passing value through construct.
|
||||
"""
|
||||
net = PoissonProb()
|
||||
value = Tensor([0.2, 0.3, 5.0, 2, 3.9], dtype=dtype.float32)
|
||||
ans = net(value)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class PoissonProb1(nn.Cell):
|
||||
"""
|
||||
Poisson distribution: initialize without rate.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(PoissonProb1, self).__init__()
|
||||
self.p = msd.Poisson(dtype=dtype.float32)
|
||||
|
||||
def construct(self, value, rate):
|
||||
prob = self.p.prob(value, rate)
|
||||
log_prob = self.p.log_prob(value, rate)
|
||||
cdf = self.p.cdf(value, rate)
|
||||
log_cdf = self.p.log_cdf(value, rate)
|
||||
sf = self.p.survival_function(value, rate)
|
||||
log_sf = self.p.log_survival(value, rate)
|
||||
return prob + log_prob + cdf + log_cdf + sf + log_sf
|
||||
|
||||
def test_poisson_prob1():
|
||||
"""
|
||||
Test probability functions: passing value/rate through construct.
|
||||
"""
|
||||
net = PoissonProb1()
|
||||
value = Tensor([0.2, 0.9, 1, 2, 3], dtype=dtype.float32)
|
||||
rate = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
|
||||
ans = net(value, rate)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class PoissonBasics(nn.Cell):
|
||||
"""
|
||||
Test class: basic mean/sd/var/mode function.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(PoissonBasics, self).__init__()
|
||||
self.p = msd.Poisson([2.3, 2.5], dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.p.mean()
|
||||
sd = self.p.sd()
|
||||
var = self.p.var()
|
||||
return mean + sd + var
|
||||
|
||||
def test_bascis():
|
||||
"""
|
||||
Test mean/sd/var/mode functionality of Poisson distribution.
|
||||
"""
|
||||
net = PoissonBasics()
|
||||
ans = net()
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class PoissonConstruct(nn.Cell):
|
||||
"""
|
||||
Poisson distribution: going through construct.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(PoissonConstruct, self).__init__()
|
||||
self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
|
||||
self.p1 = msd.Poisson(dtype=dtype.float32)
|
||||
|
||||
def construct(self, value, rate):
|
||||
prob = self.p('prob', value)
|
||||
prob1 = self.p('prob', value, rate)
|
||||
prob2 = self.p1('prob', value, rate)
|
||||
return prob + prob1 + prob2
|
||||
|
||||
def test_poisson_construct():
|
||||
"""
|
||||
Test probability function going through construct.
|
||||
"""
|
||||
net = PoissonConstruct()
|
||||
value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
|
||||
probs = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
|
||||
ans = net(value, probs)
|
||||
assert isinstance(ans, Tensor)
|
Loading…
Reference in new issue