Add Poisson distribution

pull/8752/head
peixu_ren 4 years ago
parent f894fa5b86
commit 01f5da0a14

@ -18,27 +18,29 @@ Distributions are the high-level components used to construct the probabilistic
from .distribution import Distribution
from .transformed_distribution import TransformedDistribution
from .normal import Normal
from .bernoulli import Bernoulli
from .categorical import Categorical
from .cauchy import Cauchy
from .exponential import Exponential
from .uniform import Uniform
from .geometric import Geometric
from .categorical import Categorical
from .log_normal import LogNormal
from .logistic import Logistic
from .gumbel import Gumbel
from .cauchy import Cauchy
from .logistic import Logistic
from .log_normal import LogNormal
from .normal import Normal
from .poisson import Poisson
from .uniform import Uniform
__all__ = ['Distribution',
'TransformedDistribution',
'Normal',
'Bernoulli',
'Exponential',
'Uniform',
'Categorical',
'Cauchy',
'Exponential',
'Geometric',
'LogNormal',
'Logistic',
'Gumbel',
'Cauchy',
'Logistic',
'LogNormal',
'Normal',
'Poisson',
'Uniform',
]

File diff suppressed because it is too large Load Diff

@ -0,0 +1,210 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for Poisson distribution"""
import numpy as np
from scipy import stats
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor
from mindspore import dtype
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Prob(nn.Cell):
"""
Test class: probability of Poisson distribution.
"""
def __init__(self):
super(Prob, self).__init__()
self.p = msd.Poisson([0.5], dtype=dtype.float32)
def construct(self, x_):
return self.p.prob(x_)
def test_pdf():
"""
Test pdf.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_pdf = poisson_benchmark.pmf([-1.0, 0.0, 1.0]).astype(np.float32)
pdf = Prob()
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
output = pdf(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
class LogProb(nn.Cell):
"""
Test class: log probability of Poisson distribution.
"""
def __init__(self):
super(LogProb, self).__init__()
self.p = msd.Poisson(0.5, dtype=dtype.float32)
def construct(self, x_):
return self.p.log_prob(x_)
def test_log_likelihood():
"""
Test log_pdf.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_logpdf = poisson_benchmark.logpmf([1.0, 2.0]).astype(np.float32)
logprob = LogProb()
x_ = Tensor(np.array([1.0, 2.0]).astype(np.float32), dtype=dtype.float32)
output = logprob(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
class Basics(nn.Cell):
"""
Test class: mean/sd/mode of Poisson distribution.
"""
def __init__(self):
super(Basics, self).__init__()
self.p = msd.Poisson([1.44], dtype=dtype.float32)
def construct(self):
return self.p.mean(), self.p.sd(), self.p.mode()
def test_basics():
"""
Test mean/standard/mode deviation.
"""
basics = Basics()
mean, sd, mode = basics()
expect_mean = 1.44
expect_sd = 1.2
expect_mode = 1
tol = 1e-6
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
class Sampling(nn.Cell):
"""
Test class: sample of Poisson distribution.
"""
def __init__(self, shape, seed=0):
super(Sampling, self).__init__()
self.p = msd.Poisson([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
self.shape = shape
def construct(self, rate=None):
return self.p.sample(self.shape, rate)
def test_sample():
"""
Test sample.
"""
shape = (2, 3)
seed = 10
rate = Tensor([1.0, 2.0, 3.0], dtype=dtype.float32)
sample = Sampling(shape, seed=seed)
output = sample(rate)
assert output.shape == (2, 3, 3)
class CDF(nn.Cell):
"""
Test class: cdf of Poisson distribution.
"""
def __init__(self):
super(CDF, self).__init__()
self.p = msd.Poisson([0.5], dtype=dtype.float32)
def construct(self, x_):
return self.p.cdf(x_)
def test_cdf():
"""
Test cdf.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_cdf = poisson_benchmark.cdf([-1.0, 0.0, 1.0]).astype(np.float32)
cdf = CDF()
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
output = cdf(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
class LogCDF(nn.Cell):
"""
Test class: log_cdf of Poisson distribution.
"""
def __init__(self):
super(LogCDF, self).__init__()
self.p = msd.Poisson([0.5], dtype=dtype.float32)
def construct(self, x_):
return self.p.log_cdf(x_)
def test_log_cdf():
"""
Test log_cdf.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_logcdf = poisson_benchmark.logcdf([0.5, 1.0, 2.5]).astype(np.float32)
logcdf = LogCDF()
x_ = Tensor(np.array([0.5, 1.0, 2.5]).astype(np.float32), dtype=dtype.float32)
output = logcdf(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
class SF(nn.Cell):
"""
Test class: survival function of Poisson distribution.
"""
def __init__(self):
super(SF, self).__init__()
self.p = msd.Poisson(0.5, dtype=dtype.float32)
def construct(self, x_):
return self.p.survival_function(x_)
def test_survival():
"""
Test survival function.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_survival = poisson_benchmark.sf([-1.0, 0.0, 1.0]).astype(np.float32)
survival = SF()
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
output = survival(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
class LogSF(nn.Cell):
"""
Test class: log survival function of Poisson distribution.
"""
def __init__(self):
super(LogSF, self).__init__()
self.p = msd.Poisson(0.5, dtype=dtype.float32)
def construct(self, x_):
return self.p.log_survival(x_)
def test_log_survival():
"""
Test log survival function.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_logsurvival = poisson_benchmark.logsf([-1.0, 0.0, 1.0]).astype(np.float32)
logsurvival = LogSF()
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
output = logsurvival(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_logsurvival) < tol).all()

@ -0,0 +1,154 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.Poisson.
"""
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_arguments():
"""
Args passing during initialization.
"""
p = msd.Poisson()
assert isinstance(p, msd.Distribution)
p = msd.Poisson([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
assert isinstance(p, msd.Distribution)
def test_type():
with pytest.raises(TypeError):
msd.Poisson([0.1], dtype=dtype.bool_)
def test_name():
with pytest.raises(TypeError):
msd.Poisson([0.1], name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Poisson([0.1], seed='seed')
def test_rate():
"""
Invalid rate.
"""
with pytest.raises(ValueError):
msd.Poisson([-0.1], dtype=dtype.float32)
with pytest.raises(ValueError):
msd.Poisson([0.0], dtype=dtype.float32)
class PoissonProb(nn.Cell):
"""
Poisson distribution: initialize with rate.
"""
def __init__(self):
super(PoissonProb, self).__init__()
self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
def construct(self, value):
prob = self.p.prob(value)
log_prob = self.p.log_prob(value)
cdf = self.p.cdf(value)
log_cdf = self.p.log_cdf(value)
sf = self.p.survival_function(value)
log_sf = self.p.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_poisson_prob():
"""
Test probability functions: passing value through construct.
"""
net = PoissonProb()
value = Tensor([0.2, 0.3, 5.0, 2, 3.9], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class PoissonProb1(nn.Cell):
"""
Poisson distribution: initialize without rate.
"""
def __init__(self):
super(PoissonProb1, self).__init__()
self.p = msd.Poisson(dtype=dtype.float32)
def construct(self, value, rate):
prob = self.p.prob(value, rate)
log_prob = self.p.log_prob(value, rate)
cdf = self.p.cdf(value, rate)
log_cdf = self.p.log_cdf(value, rate)
sf = self.p.survival_function(value, rate)
log_sf = self.p.log_survival(value, rate)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_poisson_prob1():
"""
Test probability functions: passing value/rate through construct.
"""
net = PoissonProb1()
value = Tensor([0.2, 0.9, 1, 2, 3], dtype=dtype.float32)
rate = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
ans = net(value, rate)
assert isinstance(ans, Tensor)
class PoissonBasics(nn.Cell):
"""
Test class: basic mean/sd/var/mode function.
"""
def __init__(self):
super(PoissonBasics, self).__init__()
self.p = msd.Poisson([2.3, 2.5], dtype=dtype.float32)
def construct(self):
mean = self.p.mean()
sd = self.p.sd()
var = self.p.var()
return mean + sd + var
def test_bascis():
"""
Test mean/sd/var/mode functionality of Poisson distribution.
"""
net = PoissonBasics()
ans = net()
assert isinstance(ans, Tensor)
class PoissonConstruct(nn.Cell):
"""
Poisson distribution: going through construct.
"""
def __init__(self):
super(PoissonConstruct, self).__init__()
self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
self.p1 = msd.Poisson(dtype=dtype.float32)
def construct(self, value, rate):
prob = self.p('prob', value)
prob1 = self.p('prob', value, rate)
prob2 = self.p1('prob', value, rate)
return prob + prob1 + prob2
def test_poisson_construct():
"""
Test probability function going through construct.
"""
net = PoissonConstruct()
value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
probs = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
ans = net(value, probs)
assert isinstance(ans, Tensor)
Loading…
Cancel
Save