!9209 Delete sequence mask function and fix comment in Interpolate function.

From: @liangzhibo
Reviewed-by: @zh_qh,@chenfei52,@ginfung
Signed-off-by: @zh_qh
pull/9209/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 053bcd0266

@ -589,17 +589,15 @@ class Interpolate(Cell):
Samples the input tensor to the given size or scale_factor. Now, only support
bilinear interpolation.
Args:
size (Union[tuple[int], list[int]]): A tuple or list of 2 int elements '(new_height, new_width)',
the new size of the tensor. Default: None.
scale_factor (int): The scale factor of new size of the tensor. The value should be positive integer.
Default: None.
align_corners (bool): If true, rescale input by '(new_height - 1) / (height - 1)', which exactly aligns
the 4 corners of images and resized images. If false, rescale by 'new_height / height'. Default: False.
Inputs:
- **x** (Tensor) - Tensor to be resized. Input tensor must be a 4-D tensor with shape:
math:`(batch, channels, height, width)`, with data type of float16 or float32.
- **size** (Union[tuple[int], list[int]]): A tuple or list of 2 int elements '(new_height, new_width)',
the new size of the tensor. One and only one of size and scale_factor can be set to None. Default: None.
- **scale_factor** (int): The scale factor of new size of the tensor. The value should be positive integer.
One and only one of size and scale_factor can be set to None. Default: None.
- **align_corners** (bool): If true, rescale input by '(new_height - 1) / (height - 1)', which exactly aligns
the 4 corners of images and resized images. If false, rescale by 'new_height / height'. Default: False.
Outputs:
Resized tensor.
@ -609,14 +607,14 @@ class Interpolate(Cell):
scale_factor * width)` in float32
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
``Ascend``
Examples:
>>> from mindspore.ops import operations as P
>>> tensor = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mindspore.float32)
>>> interpolate = nn.Interpolate()
>>> result = interpolate(tensor, size=(5,5))
>>> assert result.shape == (1, 1, 5, 5)
>>> print(result.shape)
(1, 1, 5, 5)
"""
def __init__(self):
super(Interpolate, self).__init__()

@ -71,16 +71,6 @@ def get_bprop_zeros(self):
return bprop
@bprop_getters.register(P.SequenceMask)
def get_bprop_sequence_mask(self):
"""Generate bprop for SequenceMask"""
def bprop(lengths, dtype, max_length, out, dout):
return zeros_like(dims), zeros_like(max_length)
return bprop
@bprop_getters.register(P.DType)
def get_bprop_dtype(self):
"""Generate bprop for DType"""

@ -184,7 +184,6 @@ __all__ = [
'Fill',
'Ones',
'Zeros',
'SequenceMask',
'OnesLike',
'ZerosLike',
'Select',

Loading…
Cancel
Save