add logistic distribution

pull/7092/head
Xun Deng 4 years ago
parent 9c79b9d712
commit 05a0dac125

@ -25,6 +25,7 @@ from .uniform import Uniform
from .geometric import Geometric
from .categorical import Categorical
from .log_normal import LogNormal
from .logistic import Logistic
__all__ = ['Distribution',
'TransformedDistribution',
@ -35,4 +36,5 @@ __all__ = ['Distribution',
'Categorical',
'Geometric',
'LogNormal',
'Logistic',
]

File diff suppressed because it is too large Load Diff

@ -0,0 +1,227 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for Logistic distribution"""
import numpy as np
from scipy import stats
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor
from mindspore import dtype
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Prob(nn.Cell):
"""
Test class: probability of Logistic distribution.
"""
def __init__(self):
super(Prob, self).__init__()
self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
def construct(self, x_):
return self.l.prob(x_)
def test_pdf():
"""
Test pdf.
"""
logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
expect_pdf = logistic_benchmark.pdf([1.0, 2.0]).astype(np.float32)
pdf = Prob()
output = pdf(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
class LogProb(nn.Cell):
"""
Test class: log probability of Logistic distribution.
"""
def __init__(self):
super(LogProb, self).__init__()
self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
def construct(self, x_):
return self.l.log_prob(x_)
def test_log_likelihood():
"""
Test log_pdf.
"""
logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
expect_logpdf = logistic_benchmark.logpdf([1.0, 2.0]).astype(np.float32)
logprob = LogProb()
output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
class Basics(nn.Cell):
"""
Test class: mean/sd/mode of Logistic distribution.
"""
def __init__(self):
super(Basics, self).__init__()
self.l = msd.Logistic(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
def construct(self):
return self.l.mean(), self.l.sd(), self.l.mode()
def test_basics():
"""
Test mean/standard deviation/mode.
"""
basics = Basics()
mean, sd, mode = basics()
expect_mean = [3.0, 3.0]
expect_sd = np.pi * np.array([2.0, 4.0]) / np.sqrt(np.array([3.0]))
tol = 1e-6
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
assert (np.abs(mode.asnumpy() - expect_mean) < tol).all()
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
class Sampling(nn.Cell):
"""
Test class: sample of Logistic distribution.
"""
def __init__(self, shape, seed=0):
super(Sampling, self).__init__()
self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
self.shape = shape
def construct(self, mean=None, sd=None):
return self.l.sample(self.shape, mean, sd)
def test_sample():
"""
Test sample.
"""
shape = (2, 3)
seed = 10
mean = Tensor([2.0], dtype=dtype.float32)
sd = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
sample = Sampling(shape, seed=seed)
output = sample(mean, sd)
assert output.shape == (2, 3, 3)
class CDF(nn.Cell):
"""
Test class: cdf of Logistic distribution.
"""
def __init__(self):
super(CDF, self).__init__()
self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
def construct(self, x_):
return self.l.cdf(x_)
def test_cdf():
"""
Test cdf.
"""
logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
expect_cdf = logistic_benchmark.cdf([1.0, 2.0]).astype(np.float32)
cdf = CDF()
output = cdf(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 2e-5
assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
class LogCDF(nn.Cell):
"""
Test class: log_cdf of Logistic distribution.
"""
def __init__(self):
super(LogCDF, self).__init__()
self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
def construct(self, x_):
return self.l.log_cdf(x_)
def test_log_cdf():
"""
Test log cdf.
"""
logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
expect_logcdf = logistic_benchmark.logcdf([1.0, 2.0]).astype(np.float32)
logcdf = LogCDF()
output = logcdf(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 5e-5
assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
class SF(nn.Cell):
"""
Test class: survival function of Logistic distribution.
"""
def __init__(self):
super(SF, self).__init__()
self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
def construct(self, x_):
return self.l.survival_function(x_)
def test_survival():
"""
Test log_survival.
"""
logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
expect_survival = logistic_benchmark.sf([1.0, 2.0]).astype(np.float32)
survival_function = SF()
output = survival_function(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 2e-5
assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
class LogSF(nn.Cell):
"""
Test class: log survival function of Logistic distribution.
"""
def __init__(self):
super(LogSF, self).__init__()
self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
def construct(self, x_):
return self.l.log_survival(x_)
def test_log_survival():
"""
Test log_survival.
"""
logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
expect_log_survival = logistic_benchmark.logsf([1.0, 2.0]).astype(np.float32)
log_survival = LogSF()
output = log_survival(Tensor([1.0, 2.0], dtype=dtype.float32))
tol = 2e-5
assert (np.abs(output.asnumpy() - expect_log_survival) < tol).all()
class EntropyH(nn.Cell):
"""
Test class: entropy of Logistic distribution.
"""
def __init__(self):
super(EntropyH, self).__init__()
self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
def construct(self):
return self.l.entropy()
def test_entropy():
"""
Test entropy.
"""
logistic_benchmark = stats.logistic(np.array([3.0]), np.array([[2.0], [4.0]]))
expect_entropy = logistic_benchmark.entropy().astype(np.float32)
entropy = EntropyH()
output = entropy()
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()

@ -0,0 +1,195 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.logistic.
"""
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_logistic_shape_errpr():
"""
Invalid shapes.
"""
with pytest.raises(ValueError):
msd.Logistic([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
def test_type():
with pytest.raises(TypeError):
msd.Logistic(0., 1., dtype=dtype.int32)
def test_name():
with pytest.raises(TypeError):
msd.Logistic(0., 1., name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Logistic(0., 1., seed='seed')
def test_scale():
with pytest.raises(ValueError):
msd.Logistic(0., 0.)
with pytest.raises(ValueError):
msd.Logistic(0., -1.)
def test_arguments():
"""
args passing during initialization.
"""
l = msd.Logistic()
assert isinstance(l, msd.Distribution)
l = msd.Logistic([3.0], [4.0], dtype=dtype.float32)
assert isinstance(l, msd.Distribution)
class LogisticProb(nn.Cell):
"""
logistic distribution: initialize with loc/scale.
"""
def __init__(self):
super(LogisticProb, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0, dtype=dtype.float32)
def construct(self, value):
prob = self.logistic.prob(value)
log_prob = self.logistic.log_prob(value)
cdf = self.logistic.cdf(value)
log_cdf = self.logistic.log_cdf(value)
sf = self.logistic.survival_function(value)
log_sf = self.logistic.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_logistic_prob():
"""
Test probability functions: passing value through construct.
"""
net = LogisticProb()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class LogisticProb1(nn.Cell):
"""
logistic distribution: initialize without loc/scale.
"""
def __init__(self):
super(LogisticProb1, self).__init__()
self.logistic = msd.Logistic()
def construct(self, value, mu, s):
prob = self.logistic.prob(value, mu, s)
log_prob = self.logistic.log_prob(value, mu, s)
cdf = self.logistic.cdf(value, mu, s)
log_cdf = self.logistic.log_cdf(value, mu, s)
sf = self.logistic.survival_function(value, mu, s)
log_sf = self.logistic.log_survival(value, mu, s)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_logistic_prob1():
"""
Test probability functions: passing loc/scale, value through construct.
"""
net = LogisticProb1()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mu = Tensor([0.0], dtype=dtype.float32)
s = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mu, s)
assert isinstance(ans, Tensor)
class KL(nn.Cell):
"""
Test kl_loss. Should raise NotImplementedError.
"""
def __init__(self):
super(KL, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0)
def construct(self, mu, s):
kl = self.logistic.kl_loss('Logistic', mu, s)
return kl
class Crossentropy(nn.Cell):
"""
Test cross entropy. Should raise NotImplementedError.
"""
def __init__(self):
super(Crossentropy, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0)
def construct(self, mu, s):
cross_entropy = self.logistic.cross_entropy('Logistic', mu, s)
return cross_entropy
class LogisticBasics(nn.Cell):
"""
Test class: basic loc/scale function.
"""
def __init__(self):
super(LogisticBasics, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0, dtype=dtype.float32)
def construct(self):
mean = self.logistic.mean()
sd = self.logistic.sd()
mode = self.logistic.mode()
entropy = self.logistic.entropy()
return mean + sd + mode + entropy
def test_bascis():
"""
Test mean/sd/mode/entropy functionality of logistic.
"""
net = LogisticBasics()
ans = net()
assert isinstance(ans, Tensor)
mu = Tensor(1.0, dtype=dtype.float32)
s = Tensor(1.0, dtype=dtype.float32)
with pytest.raises(NotImplementedError):
kl = KL()
ans = kl(mu, s)
with pytest.raises(NotImplementedError):
crossentropy = Crossentropy()
ans = crossentropy(mu, s)
class LogisticConstruct(nn.Cell):
"""
logistic distribution: going through construct.
"""
def __init__(self):
super(LogisticConstruct, self).__init__()
self.logistic = msd.Logistic(3.0, 4.0)
self.logistic1 = msd.Logistic()
def construct(self, value, mu, s):
prob = self.logistic('prob', value)
prob1 = self.logistic('prob', value, mu, s)
prob2 = self.logistic1('prob', value, mu, s)
return prob + prob1 + prob2
def test_logistic_construct():
"""
Test probability function going through construct.
"""
net = LogisticConstruct()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mu = Tensor([0.0], dtype=dtype.float32)
s = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mu, s)
assert isinstance(ans, Tensor)
Loading…
Cancel
Save