!12 Fix dtype bug for loss_scale and weight_decay

Merge pull request !12 from seatea/dynamic-loss-scale
pull/12/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit 062b744b19

@ -84,7 +84,7 @@ apply_decay = C.MultitypeFuncGraph("apply_decay")
def _tensor_apply_decay(weight_decay, if_apply, weight, gradient):
"""Get grad with weight_decay."""
if if_apply:
return op_add((gradient, weight * F.scalar_to_array(weight_decay)))
return op_add((gradient, weight * weight_decay))
return gradient

@ -32,7 +32,7 @@ reciprocal = P.Reciprocal()
@_grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad):
return grad * reciprocal(scale)
return grad * F.cast(reciprocal(scale), F.dtype(grad))
class DynamicLossScaleUpdateCell(Cell):

Loading…
Cancel
Save