|
|
|
@ -36,18 +36,22 @@ ANNO_PATH=$5
|
|
|
|
|
PRE_TRAINED=$7
|
|
|
|
|
PRE_TRAINED_EPOCH_SIZE=$8
|
|
|
|
|
|
|
|
|
|
BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
|
|
|
|
|
cd $BASE_PATH/../ || exit
|
|
|
|
|
|
|
|
|
|
# Before start distribute train, first create mindrecord files.
|
|
|
|
|
python train.py --only_create_dataset=1 --mindrecord_dir=$MINDRECORD_DIR --image_dir=$IMAGE_DIR \
|
|
|
|
|
--anno_path=$ANNO_PATH
|
|
|
|
|
if [ $? -ne 0 ]
|
|
|
|
|
then
|
|
|
|
|
exit 1
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
echo "After running the scipt, the network runs in the background. The log will be generated in LOGx/log.txt"
|
|
|
|
|
|
|
|
|
|
export RANK_TABLE_FILE=$6
|
|
|
|
|
export RANK_SIZE=$1
|
|
|
|
|
|
|
|
|
|
BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
|
|
|
|
|
cd $BASE_PATH/../ || exit
|
|
|
|
|
|
|
|
|
|
for((i=0;i<RANK_SIZE;i++))
|
|
|
|
|
do
|
|
|
|
|
export DEVICE_ID=$i
|
|
|
|
|