parent
461e020bb9
commit
0a2525a522
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAtanGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAtanGrad, self).__init__()
|
||||
self.atanGrad = G.AtanGrad()
|
||||
|
||||
def construct(self, x, dy):
|
||||
return self.atanGrad(x, dy)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_atan_grad():
|
||||
x = np.array([-0.5, 0, 0.5]).astype('float32')
|
||||
dy = np.array([1, 0, -1]).astype('float32')
|
||||
atan_grad = NetAtanGrad()
|
||||
output = atan_grad(Tensor(x), Tensor(dy))
|
||||
print(output)
|
||||
expect = dy / (1 + x * x)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAtan(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAtan, self).__init__()
|
||||
self.atan = P.Atan()
|
||||
|
||||
def construct(self, x):
|
||||
return self.atan(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_atan():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAtan()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.arctan(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetCos(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetCos, self).__init__()
|
||||
self.cos = P.Cos()
|
||||
|
||||
def construct(self, x):
|
||||
return self.cos(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_cos():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetCos()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.cos(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetSin(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSin, self).__init__()
|
||||
self.sin = P.Sin()
|
||||
|
||||
def construct(self, x):
|
||||
return self.sin(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_sin():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetSin()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.sin(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetTan(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetTan, self).__init__()
|
||||
self.tan = P.Tan()
|
||||
|
||||
def construct(self, x):
|
||||
return self.tan(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_tan():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetTan()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.tan(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
Loading…
Reference in new issue