parent
17764803ef
commit
0b74b0f50b
@ -0,0 +1,71 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/sigmoid_cross_entropy_with_logits_cpu_kernel.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void SigmoidCrossEntropyWithLogitsCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
std::vector<uint64_t> x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (const uint64_t &d : x_shape) {
|
||||
tensor_size_ *= d;
|
||||
}
|
||||
}
|
||||
|
||||
bool SigmoidCrossEntropyWithLogitsCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeFloat16) {
|
||||
LaunchKernel<float16>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SigmoidCrossEntropyWithLogitsCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
auto logits_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto labels_addr = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
T zero = (T)0.0;
|
||||
T one = (T)1.0;
|
||||
T two = (T)2.0;
|
||||
for (uint64_t i = 0; i < tensor_size_; ++i) {
|
||||
if (logits_addr[i] >= zero) {
|
||||
output_addr[i] = log1p(exp(logits_addr[i] - two * logits_addr[i])) - logits_addr[i] * (labels_addr[i] - one);
|
||||
} else {
|
||||
output_addr[i] = log1p(exp(logits_addr[i])) - logits_addr[i] * labels_addr[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SigmoidCrossEntropyWithLogitsCPUKernel::CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
MS_LOG(EXCEPTION) << "SigmoidCrossEntropyWithLogitsCPUKernel needs 2 inputs, but gets " << input_num;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "SigmoidCrossEntropyWithLogitsCPUKernel expects 1 output, but gets" << output_num;
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,57 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_CPU_KERNEL_H_
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class SigmoidCrossEntropyWithLogitsCPUKernel : public CPUKernel {
|
||||
public:
|
||||
SigmoidCrossEntropyWithLogitsCPUKernel() = default;
|
||||
~SigmoidCrossEntropyWithLogitsCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
uint64_t tensor_size_{1};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
SigmoidCrossEntropyWithLogits,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
SigmoidCrossEntropyWithLogitsCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
SigmoidCrossEntropyWithLogits,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
SigmoidCrossEntropyWithLogitsCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_CPU_KERNEL_H_
|
@ -0,0 +1,72 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/sigmoid_cross_entropy_with_logits_grad_cpu_kernel.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void SigmoidCrossEntropyWithLogitsGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
std::vector<uint64_t> x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (const uint64_t &d : x_shape) {
|
||||
tensor_size_ *= d;
|
||||
}
|
||||
}
|
||||
|
||||
bool SigmoidCrossEntropyWithLogitsGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeFloat16) {
|
||||
LaunchKernel<float16>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SigmoidCrossEntropyWithLogitsGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
auto logits_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto labels_addr = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto dloss_addr = reinterpret_cast<T *>(inputs[2]->addr);
|
||||
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
T zero = (T)0.0;
|
||||
T one = (T)1.0;
|
||||
for (uint64_t i = 0; i < tensor_size_; ++i) {
|
||||
if (logits_addr[i] >= zero) {
|
||||
output_addr[i] = (one / (one + exp(-logits_addr[i])) - labels_addr[i]) * dloss_addr[i];
|
||||
} else {
|
||||
const T exp_val = exp(logits_addr[i]);
|
||||
output_addr[i] = (exp_val / (one + exp_val) - labels_addr[i]) * dloss_addr[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SigmoidCrossEntropyWithLogitsGradCPUKernel::CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 3) {
|
||||
MS_LOG(EXCEPTION) << "SigmoidCrossEntropyWithLogitsCPUKernel needs 2 inputs, but gets " << input_num;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "SigmoidCrossEntropyWithLogitsCPUKernel expects 1 output, but gets" << output_num;
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,63 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_CPU_KERNEL_H_
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class SigmoidCrossEntropyWithLogitsGradCPUKernel : public CPUKernel {
|
||||
public:
|
||||
SigmoidCrossEntropyWithLogitsGradCPUKernel() = default;
|
||||
~SigmoidCrossEntropyWithLogitsGradCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
uint64_t tensor_size_{1};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(SigmoidCrossEntropyWithLogitsGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
SigmoidCrossEntropyWithLogitsGradCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(SigmoidCrossEntropyWithLogitsGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SigmoidCrossEntropyWithLogitsGradCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_CPU_KERNEL_H_
|
@ -0,0 +1,56 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
|
||||
class NetSigmoidCrossEntropyWithLogits(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSigmoidCrossEntropyWithLogits, self).__init__()
|
||||
self.sigmoid_cross_entropy_with_logits_grad = G.SigmoidCrossEntropyWithLogitsGrad()
|
||||
|
||||
def construct(self, logits, labels, dout):
|
||||
return self.sigmoid_cross_entropy_with_logits_grad(logits, labels, dout)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_sigmoid_cross_entropy_with_logits():
|
||||
logits = Tensor(np.array([[1, 1, 2],
|
||||
[1, 2, 1],
|
||||
[2, 1, 1]]).astype(np.float32))
|
||||
labels = Tensor(np.array([[0, 0, 1],
|
||||
[0, 1, 0],
|
||||
[1, 0, 0]]).astype(np.float32))
|
||||
dout = Tensor(np.ones(shape=[3, 3]).astype(np.float32))
|
||||
|
||||
expect = np.array([[0.731059, 0.731059, -0.119203],
|
||||
[0.731059, -0.119203, 0.731059],
|
||||
[-0.119203, 0.731059, 0.731059]]).astype(np.float32)
|
||||
|
||||
error = np.ones(shape=[3, 3]) * 1.0e-6
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
sigmoid_cross_entropy_with_logits = NetSigmoidCrossEntropyWithLogits()
|
||||
output = sigmoid_cross_entropy_with_logits(logits, labels, dout)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(abs(diff) < error)
|
@ -0,0 +1,54 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class NetSigmoidCrossEntropyWithLogits(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSigmoidCrossEntropyWithLogits, self).__init__()
|
||||
self.loss = P.SigmoidCrossEntropyWithLogits()
|
||||
|
||||
def construct(self, logits, labels):
|
||||
return self.loss(logits, labels)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_sigmoid_cross_entropy_with_logits():
|
||||
logits = Tensor(np.array([[1, 1, 2],
|
||||
[1, 2, 1],
|
||||
[2, 1, 1]]).astype(np.float32))
|
||||
labels = Tensor(np.array([[0, 0, 1],
|
||||
[0, 1, 0],
|
||||
[1, 0, 0]]).astype(np.float32))
|
||||
expect_loss = np.array([[1.313262, 1.313262, 0.126928],
|
||||
[1.313262, 0.126928, 1.313262],
|
||||
[0.126928, 1.313262, 1.313262]]).astype(np.float32)
|
||||
|
||||
error = np.ones(shape=[3, 3]) * 1.0e-6
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
sigmoid_cross_entropy_with_logits = NetSigmoidCrossEntropyWithLogits()
|
||||
output = sigmoid_cross_entropy_with_logits(logits, labels)
|
||||
diff = output.asnumpy() - expect_loss
|
||||
assert np.all(abs(diff) < error)
|
Loading…
Reference in new issue