!1229 Init the slices of a Initializer on different devices
Merge pull request !1229 from yihuaijie/masterpull/1229/MERGE
commit
0ca626ef6c
@ -0,0 +1,75 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import Tensor, Parameter
|
||||
import mindspore as ms
|
||||
import mindspore.common.api as me
|
||||
from mindspore.common.initializer import initializer
|
||||
from hccl_test.manage.api import Hccl
|
||||
|
||||
|
||||
def test_initializer_weight_slice():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2, weight):
|
||||
super().__init__()
|
||||
self.weight = Parameter(weight, "w1")
|
||||
self.matmul = P.MatMul(transpose_a=False, transpose_b=True).set_strategy(strategy1)
|
||||
self.relu = P.ReLU().set_strategy(strategy2)
|
||||
|
||||
def construct(self, x):
|
||||
out = self.matmul(x, self.weight)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
def get_slice(rank):
|
||||
hccl = Hccl()
|
||||
rank_save = hccl.rank_id
|
||||
hccl.rank_id = rank
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 1), (4, 1))
|
||||
strategy2 = ((2, 4),)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
exe = me._executor
|
||||
|
||||
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
weight = initializer("Uniform", [64, 32], ms.float32)
|
||||
net = Net(strategy1, strategy2, weight)
|
||||
net.set_auto_parallel()
|
||||
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
||||
hccl.rank_id = rank_save
|
||||
return net.parameters_dict()['w1'].data.asnumpy()
|
||||
|
||||
slice0 = get_slice(0)
|
||||
slice1 = get_slice(1)
|
||||
slice4 = get_slice(4)
|
||||
slice_shape = slice0.shape
|
||||
|
||||
slice0 = slice0.flatten()
|
||||
slice1 = slice1.flatten()
|
||||
slice4 = slice4.flatten()
|
||||
expect_slice_shape = (16, 32)
|
||||
|
||||
assert expect_slice_shape == slice_shape
|
||||
assert all(slice0 == slice4)
|
||||
assert any(slice0 != slice1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_initializer_weight_slice()
|
Loading…
Reference in new issue