|
|
|
@ -28,6 +28,10 @@ from mindspore.model_zoo.mobilenet import mobilenet_v2
|
|
|
|
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
|
|
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
|
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
|
|
|
from mindspore.nn.loss.loss import _Loss
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
from mindspore.ops import functional as F
|
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
|
|
|
|
|
|
from mindspore.train.model import Model, ParallelMode
|
|
|
|
|
|
|
|
|
@ -54,6 +58,35 @@ context.set_context(enable_task_sink=True)
|
|
|
|
|
context.set_context(enable_loop_sink=True)
|
|
|
|
|
context.set_context(enable_mem_reuse=True)
|
|
|
|
|
|
|
|
|
|
class CrossEntropyWithLabelSmooth(_Loss):
|
|
|
|
|
"""
|
|
|
|
|
CrossEntropyWith LabelSmooth.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
smooth_factor (float): smooth factor, default=0.
|
|
|
|
|
num_classes (int): num classes
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
None.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, smooth_factor=0., num_classes=1000):
|
|
|
|
|
super(CrossEntropyWithLabelSmooth, self).__init__()
|
|
|
|
|
self.onehot = P.OneHot()
|
|
|
|
|
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
|
|
|
|
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
|
|
|
|
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
|
self.mean = P.ReduceMean(False)
|
|
|
|
|
self.cast = P.Cast()
|
|
|
|
|
|
|
|
|
|
def construct(self, logit, label):
|
|
|
|
|
one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1], self.on_value, self.off_value)
|
|
|
|
|
out_loss = self.ce(logit, one_hot_label)
|
|
|
|
|
out_loss = self.mean(out_loss, 0)
|
|
|
|
|
return out_loss
|
|
|
|
|
|
|
|
|
|
class Monitor(Callback):
|
|
|
|
|
"""
|
|
|
|
@ -63,7 +96,7 @@ class Monitor(Callback):
|
|
|
|
|
lr_init (numpy array): train lr
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
None.
|
|
|
|
|
None
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
|
|
|
|
@ -122,7 +155,10 @@ if __name__ == '__main__':
|
|
|
|
|
for _, cell in net.cells_and_names():
|
|
|
|
|
if isinstance(cell, nn.Dense):
|
|
|
|
|
cell.add_flags_recursive(fp32=True)
|
|
|
|
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
|
|
|
|
if config.label_smooth > 0:
|
|
|
|
|
loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes)
|
|
|
|
|
else:
|
|
|
|
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
|
|
|
|
|
|
|
|
|
print("train args: ", args_opt, "\ncfg: ", config,
|
|
|
|
|
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
|
|
|
|
|