parent
6241814320
commit
0de0aee54e
@ -0,0 +1,132 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "pre_activate/ascend/ir_fission/batch_norm_grad_split.h"
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include "utils/utils.h"
|
||||
#include "utils/context/ms_context.h"
|
||||
#include "common/utils.h"
|
||||
#include "pre_activate/common/helper.h"
|
||||
#include "device/kernel_info.h"
|
||||
#include "session/anf_runtime_algorithm.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
namespace {
|
||||
void CreateOutputsOfUpdateGrad(const FuncGraphPtr &graph, const CNodePtr &bn_grad_node,
|
||||
std::vector<AnfNodePtr> *bn_update_grad_outputs) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(bn_grad_node);
|
||||
auto bn_grad_inputs = bn_grad_node->inputs();
|
||||
if (bn_grad_inputs.size() < kBNGradInputNum) {
|
||||
MS_LOG(EXCEPTION) << "BNGrad has wrong inputs size";
|
||||
}
|
||||
std::vector<AnfNodePtr> bn_update_grad_inputs = {
|
||||
NewValueNode(std::make_shared<Primitive>(kBNTrainingUpdateGradOpName)), bn_grad_inputs[1], bn_grad_inputs[2],
|
||||
bn_grad_inputs[4], bn_grad_inputs[5]};
|
||||
auto bn_update_grad = graph->NewCNode(bn_update_grad_inputs);
|
||||
MS_EXCEPTION_IF_NULL(bn_update_grad);
|
||||
bn_update_grad->set_kernel_info(std::make_shared<device::KernelInfo>());
|
||||
bn_update_grad->set_scope(bn_grad_node->scope());
|
||||
|
||||
auto types = {AnfAlgo::GetOutputInferDataType(bn_grad_node, 1), AnfAlgo::GetOutputInferDataType(bn_grad_node, 2)};
|
||||
auto shapes = {AnfAlgo::GetOutputInferShape(bn_grad_node, 1), AnfAlgo::GetOutputInferShape(bn_grad_node, 2)};
|
||||
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, bn_update_grad.get());
|
||||
|
||||
AnfAlgo::CopyNodeAttr(kAttrEpsilon, bn_grad_node, bn_update_grad);
|
||||
CreateMultipleOutputsOfAnfNode(graph, bn_update_grad, kBNTrainingUpdateGradOutputNum, bn_update_grad_outputs);
|
||||
}
|
||||
|
||||
void CreateOutputsOfReduceGrad(const FuncGraphPtr &graph, const CNodePtr &bn_grad_node,
|
||||
const std::vector<AnfNodePtr> &bn_update_grad_outputs,
|
||||
std::vector<AnfNodePtr> *bn_reduce_grad_outputs) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(bn_grad_node);
|
||||
auto bn_grad_inputs = bn_grad_node->inputs();
|
||||
if (bn_grad_inputs.size() < kBNGradInputNum) {
|
||||
MS_LOG(EXCEPTION) << "BNGrad has wrong inputs size";
|
||||
}
|
||||
if (bn_update_grad_outputs.size() != kBNTrainingUpdateGradOutputNum) {
|
||||
MS_LOG(EXCEPTION) << "BNTrainingReduceGrad_outputs has wrong size";
|
||||
}
|
||||
std::vector<AnfNodePtr> bn_reduce_grad_inputs = {
|
||||
NewValueNode(std::make_shared<Primitive>(kBNTrainingReduceGradOpName)),
|
||||
bn_grad_inputs[1],
|
||||
bn_grad_inputs[2],
|
||||
bn_update_grad_outputs[0],
|
||||
bn_update_grad_outputs[1],
|
||||
bn_grad_inputs[3],
|
||||
bn_grad_inputs[4],
|
||||
bn_grad_inputs[5]};
|
||||
auto bn_reduce_grad = graph->NewCNode(bn_reduce_grad_inputs);
|
||||
MS_EXCEPTION_IF_NULL(bn_reduce_grad);
|
||||
bn_reduce_grad->set_kernel_info(std::make_shared<device::KernelInfo>());
|
||||
bn_reduce_grad->set_scope(bn_grad_node->scope());
|
||||
|
||||
auto types = {AnfAlgo::GetOutputInferDataType(bn_grad_node, 0)};
|
||||
auto shapes = {AnfAlgo::GetOutputInferShape(bn_grad_node, 0)};
|
||||
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, bn_reduce_grad.get());
|
||||
|
||||
AnfAlgo::CopyNodeAttr(kAttrEpsilon, bn_grad_node, bn_reduce_grad);
|
||||
(*bn_reduce_grad_outputs).push_back(bn_reduce_grad);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
const BaseRef BatchNormGradSplit::DefinePattern() const {
|
||||
VarPtr Xs = std::make_shared<SeqVar>();
|
||||
auto prim = std::make_shared<Primitive>(kBatchNormGradOpName);
|
||||
return VectorRef({prim, Xs});
|
||||
}
|
||||
|
||||
const AnfNodePtr BatchNormGradSplit::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node,
|
||||
const EquivPtr &) const {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
auto cnode = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
auto primitive = AnfAlgo::GetCNodePrimitive(cnode);
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
if (!primitive->HasAttr(kAttrIsTraining)) {
|
||||
MS_LOG(INFO) << "Op BatchNormGrad must have attrs of is_training";
|
||||
return nullptr;
|
||||
}
|
||||
if (!AnfAlgo::GetNodeAttr<bool>(cnode, kAttrIsTraining)) {
|
||||
MS_LOG(INFO) << "is_training must be true";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::vector<AnfNodePtr> bn_update_grad_outputs;
|
||||
CreateOutputsOfUpdateGrad(func_graph, cnode, &bn_update_grad_outputs);
|
||||
if (bn_update_grad_outputs.size() != kBNTrainingUpdateGradOutputNum) {
|
||||
MS_LOG(EXCEPTION) << "bn_update_grad_outputs has wrong size";
|
||||
}
|
||||
|
||||
std::vector<AnfNodePtr> bn_reduce_grad_outputs;
|
||||
CreateOutputsOfReduceGrad(func_graph, cnode, bn_update_grad_outputs, &bn_reduce_grad_outputs);
|
||||
if (bn_reduce_grad_outputs.size() != kSingleOutputNum) {
|
||||
MS_LOG(EXCEPTION) << "bn_reduce_grad_outputs has wrong size";
|
||||
}
|
||||
|
||||
std::vector<AnfNodePtr> make_tuple_inputs = {NewValueNode(prim::kPrimMakeTuple), bn_reduce_grad_outputs[0],
|
||||
bn_update_grad_outputs[0], bn_update_grad_outputs[1]};
|
||||
auto make_tuple = func_graph->NewCNode(make_tuple_inputs);
|
||||
return make_tuple;
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
@ -0,0 +1,33 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_GRAD_SPLIT_H_
|
||||
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_GRAD_SPLIT_H_
|
||||
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
#include "pre_activate/common/helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class BatchNormGradSplit : public PatternProcessPass {
|
||||
public:
|
||||
explicit BatchNormGradSplit(bool multigraph = true) : PatternProcessPass("batch_norm_grad_split", multigraph) {}
|
||||
~BatchNormGradSplit() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
};
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_GRAD_SPLIT_H_
|
@ -0,0 +1,59 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "common/backend_common_test.h"
|
||||
#include "common/py_func_graph_fetcher.h"
|
||||
#include "operator/ops.h"
|
||||
#include "ir/meta_tensor.h"
|
||||
#include "debug/anf_ir_dump.h"
|
||||
#include "utils/utils.h"
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
#include "pre_activate/ascend/ir_fission/batch_norm_grad_split.h"
|
||||
#include "session/anf_runtime_algorithm.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class TestHWBatchNormGradSplit : public BackendCommon {
|
||||
public:
|
||||
TestHWBatchNormGradSplit() : get_py_fun_("gtest_input.pre_activate.batch_norm_grad_split", true) {}
|
||||
|
||||
public:
|
||||
UT::PyFuncGraphFetcher get_py_fun_;
|
||||
};
|
||||
|
||||
TEST_F(TestHWBatchNormGradSplit, test_split) {
|
||||
get_py_fun_.SetDoResolve(true);
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_batch_norm_grad_split", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp_x{1, 64, 112, 112};
|
||||
std::vector<int> shp_b{64};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
|
||||
auto b_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_b);
|
||||
AbstractBasePtrList args_spec_list{x_abstract, x_abstract, b_abstract, b_abstract, b_abstract, b_abstract};
|
||||
auto kernel_graph = GetKernelGraph(g, args_spec_list);
|
||||
EXPECT_NE(kernel_graph, nullptr);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
auto pass = std::make_shared<opt::BatchNormGradSplit>();
|
||||
pm->AddPass(pass);
|
||||
optimizer->AddPassManager(pm);
|
||||
auto new_graph = optimizer->Optimize(kernel_graph);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_batch_norm_grad_split", "after");
|
||||
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
@ -0,0 +1,61 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
from mindspore.ops import Primitive
|
||||
|
||||
batch_norm_grad = G.BatchNormGrad(is_training=True)
|
||||
bn_training_update_grad = Primitive('BNTrainingUpdateGrad')
|
||||
bn_training_reduce_grad = Primitive('BNTrainingReduceGrad')
|
||||
make_tuple = Primitive('make_tuple')
|
||||
tuple_getitem = Primitive('tuple_getitem')
|
||||
|
||||
class FnDict:
|
||||
def __init__(self):
|
||||
self.fnDict = {}
|
||||
|
||||
def __call__(self, fn):
|
||||
self.fnDict[fn.__name__] = fn
|
||||
|
||||
def __getitem__(self, name):
|
||||
return self.fnDict[name]
|
||||
|
||||
def test_batch_norm_grad_split(tag):
|
||||
fns = FnDict()
|
||||
|
||||
@fns
|
||||
def before(i0, i1, i2, i3, i4, i5):
|
||||
bn_grad_output = batch_norm_grad(i0, i1, i2, i3, i4, i5)
|
||||
item0 = tuple_getitem(bn_grad_output, 0)
|
||||
item1 = tuple_getitem(bn_grad_output, 1)
|
||||
item2 = tuple_getitem(bn_grad_output, 2)
|
||||
output = make_tuple(item0, item1, item2)
|
||||
return output
|
||||
|
||||
@fns
|
||||
def after(i0, i1, i2, i3, i4, i5):
|
||||
bn_update_grad_output = bn_training_update_grad(i0, i1, i3, i4)
|
||||
update_item0 = tuple_getitem(bn_update_grad_output, 0)
|
||||
update_item1 = tuple_getitem(bn_update_grad_output, 1)
|
||||
bn_reduce_grad_output = bn_training_reduce_grad(i0, i1, update_item0, update_item1, i2, i3, i4)
|
||||
output = make_tuple(bn_reduce_grad_output, update_item0, update_item1)
|
||||
item0 = tuple_getitem(output, 0)
|
||||
item1 = tuple_getitem(output, 1)
|
||||
item2 = tuple_getitem(output, 2)
|
||||
output = make_tuple(item0, item1, item2)
|
||||
return make_tuple(output)
|
||||
|
||||
return fns[tag]
|
Loading…
Reference in new issue