!11880 add yolov4 310 dvpp_aipp_mindir infer
From: @lihongkang1 Reviewed-by: Signed-off-by:pull/11880/MERGE
commit
0e73e82bab
@ -0,0 +1,32 @@
|
||||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <dirent.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "include/api/types.h"
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||
DIR *OpenDir(std::string_view dirName);
|
||||
std::string RealPath(std::string_view path);
|
||||
std::shared_ptr<mindspore::api::Tensor> ReadFileToTensor(const std::string &file);
|
||||
int WriteResult(const std::string& imageFile, const std::vector<mindspore::api::Buffer> &outputs);
|
||||
#endif
|
@ -0,0 +1,14 @@
|
||||
cmake_minimum_required(VERSION 3.14.1)
|
||||
project(MindSporeCxxTestcase[CXX])
|
||||
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||
option(MINDSPORE_PATH "mindspore install path" "")
|
||||
include_directories(${MINDSPORE_PATH})
|
||||
include_directories(${MINDSPORE_PATH}/include)
|
||||
include_directories(${PROJECT_SRC_ROOT}/../inc)
|
||||
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||
|
||||
add_executable(main main.cc utils.cc)
|
||||
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
cmake . -DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
make
|
@ -0,0 +1,144 @@
|
||||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <sys/time.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <dirent.h>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
|
||||
#include "include/api/model.h"
|
||||
#include "include/api/serialization.h"
|
||||
#include "include/api/context.h"
|
||||
#include "minddata/dataset/include/minddata_eager.h"
|
||||
#include "../inc/utils.h"
|
||||
#include "include/api/types.h"
|
||||
#include "minddata/dataset/include/vision.h"
|
||||
|
||||
using mindspore::api::Context;
|
||||
using mindspore::api::Serialization;
|
||||
using mindspore::api::Model;
|
||||
using mindspore::api::kModelOptionInsertOpCfgPath;
|
||||
using mindspore::api::kModelOptionPrecisionMode;
|
||||
using mindspore::api::kModelOptionOpSelectImplMode;
|
||||
using mindspore::api::Status;
|
||||
using mindspore::api::MindDataEager;
|
||||
using mindspore::api::Buffer;
|
||||
using mindspore::api::ModelType;
|
||||
using mindspore::api::GraphCell;
|
||||
using mindspore::api::SUCCESS;
|
||||
using mindspore::dataset::vision::DvppDecodeResizeJpeg;
|
||||
|
||||
DEFINE_string(mindir_path, "", "mindir path");
|
||||
DEFINE_string(dataset_path, ".", "dataset path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
DEFINE_string(precision_mode, "allow_fp32_to_fp16", "precision mode");
|
||||
DEFINE_string(op_select_impl_mode, "", "op select impl mode");
|
||||
DEFINE_string(input_shape, "img_data:1, 3, 768, 1280; img_info:1, 4", "input shape");
|
||||
DEFINE_string(input_format, "nchw", "input format");
|
||||
DEFINE_string(aipp_path, "./aipp.cfg", "aipp path");
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (RealPath(FLAGS_mindir_path).empty()) {
|
||||
std::cout << "Invalid mindir" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
if (RealPath(FLAGS_aipp_path).empty()) {
|
||||
std::cout << "Invalid aipp path" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
Context::Instance().SetDeviceTarget("Ascend310").SetDeviceID(FLAGS_device_id);
|
||||
auto graph = Serialization::LoadModel(FLAGS_mindir_path, ModelType::kMindIR);
|
||||
Model model((GraphCell(graph)));
|
||||
|
||||
std::map<std::string, std::string> build_options;
|
||||
if (!FLAGS_precision_mode.empty()) {
|
||||
build_options.emplace(kModelOptionPrecisionMode, FLAGS_precision_mode);
|
||||
}
|
||||
if (!FLAGS_op_select_impl_mode.empty()) {
|
||||
build_options.emplace(kModelOptionOpSelectImplMode, FLAGS_op_select_impl_mode);
|
||||
}
|
||||
|
||||
if (!FLAGS_aipp_path.empty()) {
|
||||
build_options.emplace(kModelOptionInsertOpCfgPath, FLAGS_aipp_path);
|
||||
}
|
||||
|
||||
Status ret = model.Build(build_options);
|
||||
if (ret != SUCCESS) {
|
||||
std::cout << "EEEEEEEERROR Build failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto all_files = GetAllFiles(FLAGS_dataset_path);
|
||||
if (all_files.empty()) {
|
||||
std::cout << "ERROR: no input data." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::map<double, double> costTime_map;
|
||||
size_t size = all_files.size();
|
||||
MindDataEager SingleOp({DvppDecodeResizeJpeg({608, 608})});
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
struct timeval start = {0};
|
||||
struct timeval end = {0};
|
||||
double startTime_ms;
|
||||
double endTime_ms;
|
||||
std::vector<Buffer> inputs;
|
||||
std::vector<Buffer> outputs;
|
||||
std::cout << "Start predict input files:" << all_files[i] << std::endl;
|
||||
auto imgDvpp = SingleOp(ReadFileToTensor(all_files[i]));
|
||||
std::vector<float> input_shape = {608, 608};
|
||||
|
||||
inputs.clear();
|
||||
inputs.emplace_back(imgDvpp->Data(), imgDvpp->DataSize());
|
||||
inputs.emplace_back(input_shape.data(), input_shape.size() * sizeof(float));
|
||||
gettimeofday(&start, NULL);
|
||||
ret = model.Predict(inputs, &outputs);
|
||||
gettimeofday(&end, NULL);
|
||||
if (ret != SUCCESS) {
|
||||
std::cout << "Predict " << all_files[i] << " failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||
endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||
costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms));
|
||||
WriteResult(all_files[i], outputs);
|
||||
}
|
||||
double average = 0.0;
|
||||
int infer_cnt = 0;
|
||||
char tmpCh[256] = {0};
|
||||
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||
double diff = 0.0;
|
||||
diff = iter->second - iter->first;
|
||||
average += diff;
|
||||
infer_cnt++;
|
||||
}
|
||||
average = average/infer_cnt;
|
||||
snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms of infer_count %d \n", average, infer_cnt);
|
||||
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl;
|
||||
std::string file_name = "./time_Result" + std::string("/test_perform_static.txt");
|
||||
std::ofstream file_stream(file_name.c_str(), std::ios::trunc);
|
||||
file_stream << tmpCh;
|
||||
file_stream.close();
|
||||
costTime_map.clear();
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,145 @@
|
||||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "../inc/utils.h"
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
using mindspore::api::Tensor;
|
||||
using mindspore::api::Buffer;
|
||||
using mindspore::api::DataType;
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||
struct dirent *filename;
|
||||
DIR *dir = OpenDir(dirName);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
|
||||
std::vector<std::string> res;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string dName = std::string(filename->d_name);
|
||||
if (dName == "." ||
|
||||
dName == ".." ||
|
||||
filename->d_type != DT_REG)
|
||||
continue;
|
||||
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||
}
|
||||
|
||||
std::sort(res.begin(), res.end());
|
||||
for (auto &f : res) {
|
||||
std::cout << "image file: " << f << std::endl;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
int WriteResult(const std::string& imageFile, const std::vector<Buffer> &outputs) {
|
||||
std::string homePath = "./result_Files";
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
size_t outputSize;
|
||||
const void * netOutput;
|
||||
netOutput = outputs[i].Data();
|
||||
outputSize = outputs[i].DataSize();
|
||||
|
||||
int pos = imageFile.rfind('/');
|
||||
std::string fileName(imageFile, pos + 1);
|
||||
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
|
||||
std::string outFileName = homePath + "/" + fileName;
|
||||
FILE * outputFile = fopen(outFileName.c_str(), "wb");
|
||||
fwrite(netOutput, outputSize, sizeof(char), outputFile);
|
||||
|
||||
fclose(outputFile);
|
||||
outputFile = nullptr;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::shared_ptr<Tensor> ReadFileToTensor(const std::string &file) {
|
||||
auto buffer = std::make_shared<Tensor>();
|
||||
if (file.empty()) {
|
||||
std::cout << "Pointer file is nullptr" << std::endl;
|
||||
return buffer;
|
||||
}
|
||||
|
||||
std::ifstream ifs(file);
|
||||
if (!ifs.good()) {
|
||||
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||
return buffer;
|
||||
}
|
||||
|
||||
if (!ifs.is_open()) {
|
||||
std::cout << "File: " << file << "open failed" << std::endl;
|
||||
return buffer;
|
||||
}
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
size_t size = ifs.tellg();
|
||||
buffer->ResizeData(size);
|
||||
if (buffer->DataSize() != size) {
|
||||
std::cout << "Malloc buf failed, file: " << file << std::endl;
|
||||
ifs.close();
|
||||
return buffer;
|
||||
}
|
||||
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
ifs.read(reinterpret_cast<char *>(buffer->MutableData()), size);
|
||||
ifs.close();
|
||||
|
||||
buffer->SetDataType(DataType::kMsUint8);
|
||||
buffer->SetShape({static_cast<int64_t>(size)});
|
||||
return buffer;
|
||||
}
|
||||
|
||||
DIR *OpenDir(std::string_view dirName) {
|
||||
if (dirName.empty()) {
|
||||
std::cout << " dirName is null ! " << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::string realPath = RealPath(dirName);
|
||||
|
||||
struct stat s;
|
||||
lstat(realPath.c_str(), &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
DIR *dir;
|
||||
dir = opendir(realPath.c_str());
|
||||
if (dir == nullptr) {
|
||||
std::cout << "Can not open dir " << dirName << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||
return dir;
|
||||
}
|
||||
|
||||
std::string RealPath(std::string_view path) {
|
||||
char real_path_mem[PATH_MAX] = {0};
|
||||
char *real_path_ret = nullptr;
|
||||
real_path_ret = realpath(path.data(), real_path_mem);
|
||||
|
||||
if (real_path_ret == nullptr) {
|
||||
std::cout << "File: " << path << " is not exist.";
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string real_path(real_path_mem);
|
||||
std::cout << path << " realpath is: " << real_path << std::endl;
|
||||
return real_path;
|
||||
}
|
@ -0,0 +1,98 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""YoloV4 310 infer."""
|
||||
import os
|
||||
import argparse
|
||||
import datetime
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from pycocotools.coco import COCO
|
||||
from src.logger import get_logger
|
||||
from eval import DetectionEngine
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser('mindspore coco testing')
|
||||
|
||||
# dataset related
|
||||
parser.add_argument('--per_batch_size', default=1, type=int, help='batch size for per gpu')
|
||||
|
||||
# logging related
|
||||
parser.add_argument('--log_path', type=str, default='outputs/', help='checkpoint save location')
|
||||
|
||||
# detect_related
|
||||
parser.add_argument('--nms_thresh', type=float, default=0.5, help='threshold for NMS')
|
||||
parser.add_argument('--ann_file', type=str, default='', help='path to annotation')
|
||||
parser.add_argument('--ignore_threshold', type=float, default=0.001, help='threshold to throw low quality boxes')
|
||||
|
||||
parser.add_argument('--img_id_file_path', type=str, default='', help='path of image dataset')
|
||||
parser.add_argument('--result_files', type=str, default='./result_Files', help='path to 310 infer result floder')
|
||||
|
||||
args, _ = parser.parse_known_args()
|
||||
|
||||
|
||||
class Redirct:
|
||||
def __init__(self):
|
||||
self.content = ""
|
||||
|
||||
def write(self, content):
|
||||
self.content += content
|
||||
|
||||
def flush(self):
|
||||
self.content = ""
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
start_time = time.time()
|
||||
|
||||
args.outputs_dir = os.path.join(args.log_path,
|
||||
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
|
||||
args.logger = get_logger(args.outputs_dir, 0)
|
||||
|
||||
# init detection engine
|
||||
detection = DetectionEngine(args)
|
||||
|
||||
coco = COCO(args.ann_file)
|
||||
result_path = args.result_files
|
||||
|
||||
files = os.listdir(args.img_id_file_path)
|
||||
|
||||
for file in files:
|
||||
img_ids_name = file.split('.')[0]
|
||||
img_id = int(np.squeeze(img_ids_name))
|
||||
imgIds = coco.getImgIds(imgIds=[img_id])
|
||||
img = coco.loadImgs(imgIds[np.random.randint(0, len(imgIds))])[0]
|
||||
image_shape = ((img['width'], img['height']),)
|
||||
img_id = (np.squeeze(img_ids_name),)
|
||||
|
||||
result_path_0 = os.path.join(result_path, img_ids_name + "_0.bin")
|
||||
result_path_1 = os.path.join(result_path, img_ids_name + "_1.bin")
|
||||
result_path_2 = os.path.join(result_path, img_ids_name + "_2.bin")
|
||||
|
||||
output_small = np.fromfile(result_path_0, dtype=np.float32).reshape(1, 19, 19, 3, 85)
|
||||
output_me = np.fromfile(result_path_1, dtype=np.float32).reshape(1, 38, 38, 3, 85)
|
||||
output_big = np.fromfile(result_path_2, dtype=np.float32).reshape(1, 76, 76, 3, 85)
|
||||
|
||||
detection.detect([output_small, output_me, output_big], args.per_batch_size, image_shape, img_id)
|
||||
|
||||
args.logger.info('Calculating mAP...')
|
||||
detection.do_nms_for_results()
|
||||
result_file_path = detection.write_result()
|
||||
args.logger.info('result file path: {}'.format(result_file_path))
|
||||
eval_result = detection.get_eval_result()
|
||||
|
||||
cost_time = time.time() - start_time
|
||||
args.logger.info('\n=============coco eval reulst=========\n' + eval_result)
|
||||
args.logger.info('testing cost time {:.2f}h'.format(cost_time / 3600.))
|
@ -0,0 +1,103 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 3 || $# -gt 4 ]]; then
|
||||
echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID] [ANN_FILE]
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
model=$(get_real_path $1)
|
||||
data_path=$(get_real_path $2)
|
||||
if [ $# == 4 ]; then
|
||||
device_id=$3
|
||||
if [ -z $device_id ]; then
|
||||
device_id=0
|
||||
else
|
||||
device_id=$device_id
|
||||
fi
|
||||
fi
|
||||
annotation_file=$(get_real_path $4)
|
||||
|
||||
echo "mindir name: "$model
|
||||
echo "dataset path: "$data_path
|
||||
echo "device id: "$device_id
|
||||
echo "annotation file: "$annotation_file
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||
else
|
||||
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages/te.egg:$ASCEND_HOME/atc/python/site-packages/topi.egg:$ASCEND_HOME/atc/python/site-packages/auto_tune.egg::$ASCEND_HOME/atc/python/site-packages/schedule_search.egg:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||
fi
|
||||
|
||||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer/src
|
||||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
sh build.sh &> build.log
|
||||
}
|
||||
|
||||
function infer()
|
||||
{
|
||||
cd -
|
||||
if [ -d result_Files ]; then
|
||||
rm -rf ./result_Files
|
||||
fi
|
||||
if [ -d time_Result ]; then
|
||||
rm -rf ./time_Result
|
||||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --aipp_path ../src/aipp.cfg &> infer.log
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
{
|
||||
python3.7 ../postprocess.py --ann_file=$annotation_file --img_id_file_path=$data_path --result_files=./result_Files &> acc.log &
|
||||
}
|
||||
|
||||
compile_app
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "compile app code failed"
|
||||
exit 1
|
||||
fi
|
||||
infer
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "execute inference failed"
|
||||
exit 1
|
||||
fi
|
||||
cal_acc
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "calculate accuracy failed"
|
||||
exit 1
|
||||
fi
|
@ -0,0 +1,26 @@
|
||||
aipp_op {
|
||||
aipp_mode : static
|
||||
input_format : YUV420SP_U8
|
||||
related_input_rank : 0
|
||||
csc_switch : true
|
||||
rbuv_swap_switch : false
|
||||
matrix_r0c0 : 256
|
||||
matrix_r0c1 : 0
|
||||
matrix_r0c2 : 359
|
||||
matrix_r1c0 : 256
|
||||
matrix_r1c1 : -88
|
||||
matrix_r1c2 : -183
|
||||
matrix_r2c0 : 256
|
||||
matrix_r2c1 : 454
|
||||
matrix_r2c2 : 0
|
||||
input_bias_0 : 0
|
||||
input_bias_1 : 128
|
||||
input_bias_2 : 128
|
||||
|
||||
mean_chn_0 : 124
|
||||
mean_chn_1 : 117
|
||||
mean_chn_2 : 104
|
||||
var_reci_chn_0 : 0.0171247538316637
|
||||
var_reci_chn_1 : 0.0175070028011204
|
||||
var_reci_chn_2 : 0.0174291938997821
|
||||
}
|
Loading…
Reference in new issue