!2010 fix operator issues for tuple_to_array and cast
Merge pull request !2010 from wangqiuliang/fix-tuple-to-array-issuepull/2010/MERGE
commit
11f5f88021
@ -0,0 +1,31 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore import context, Tensor
|
||||
|
||||
|
||||
def test_cast():
|
||||
""" tests cast for same dtype"""
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
||||
input_x = Tensor(input_np)
|
||||
type_dst = ms.float32
|
||||
cast = P.Cast()
|
||||
result = cast(input_x, type_dst)
|
||||
assert result.dtype() == type_dst
|
@ -0,0 +1,67 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test_tensor_operation """
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore import context
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
def test_parameter_add():
|
||||
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32)), name="ref")
|
||||
y = Tensor(np.ones((3, 3)).astype(np.float32))
|
||||
expect = np.ones((3, 3)).astype(np.float32) * 2
|
||||
z = x + y
|
||||
assert np.allclose(z.asnumpy(), expect)
|
||||
|
||||
def test_parameter_sub():
|
||||
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref")
|
||||
y = Tensor(np.ones((3, 3)).astype(np.float32))
|
||||
expect = np.ones((3, 3)).astype(np.float32)
|
||||
z = x - y
|
||||
assert np.allclose(z.asnumpy(), expect)
|
||||
|
||||
def test_parameter_mul():
|
||||
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref")
|
||||
y = Tensor(np.ones((3, 3)).astype(np.float32) * 2)
|
||||
expect = np.ones((3, 3)).astype(np.float32) * 4
|
||||
z = x * y
|
||||
assert np.allclose(z.asnumpy(), expect)
|
||||
|
||||
def test_parameter_div():
|
||||
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 8), name="ref")
|
||||
y = Tensor(np.ones((3, 3)).astype(np.float32) * 2)
|
||||
expect = np.ones((3, 3)).astype(np.float32) * 4
|
||||
z = x / y
|
||||
assert np.allclose(z.asnumpy(), expect)
|
||||
|
||||
class ParameterNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(ParameterNet, self).__init__()
|
||||
self.weight = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")
|
||||
|
||||
def construct(self, x):
|
||||
self.weight = x
|
||||
|
||||
def test_parameter_assign():
|
||||
"""test parameter assign with tensor"""
|
||||
input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 8.0]], np.float32))
|
||||
net = ParameterNet()
|
||||
net(input_x)
|
||||
assert np.allclose(net.weight.data.asnumpy(), input_x.asnumpy())
|
Loading…
Reference in new issue