|
|
|
@ -326,6 +326,14 @@ Strategys MakeRecSearchStrategy(const std::shared_ptr<Graph> &graph,
|
|
|
|
|
static_cast<int64_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_h));
|
|
|
|
|
s.push_back(
|
|
|
|
|
static_cast<int64_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_w));
|
|
|
|
|
} else if (output_size == 3) {
|
|
|
|
|
// Experimental support for 3D data.
|
|
|
|
|
s.push_back(
|
|
|
|
|
static_cast<int64_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_c));
|
|
|
|
|
s.push_back(
|
|
|
|
|
static_cast<int64_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_h));
|
|
|
|
|
s.push_back(
|
|
|
|
|
static_cast<int64_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_w));
|
|
|
|
|
} else if (output_size == 2) {
|
|
|
|
|
s.push_back(
|
|
|
|
|
static_cast<int64_t>(1.0 / graph->nodes[iter_graph].apply.arguments[iter_op_inputs].tensor_str.str_h));
|
|
|
|
@ -366,7 +374,8 @@ Strategys MakeDataParallelStrategy(const std::shared_ptr<Graph> &graph,
|
|
|
|
|
Dimensions s;
|
|
|
|
|
size_t input_size = origin_strategy->GetInputDim()[iter_op_inputs].size();
|
|
|
|
|
for (size_t dim = 0; dim < input_size; dim++) {
|
|
|
|
|
if (input_size == 1 || input_size == 2 || input_size == 4) {
|
|
|
|
|
// Experimental support for 3D data (input_size == 3).
|
|
|
|
|
if (input_size >= 1 && input_size <= 4) {
|
|
|
|
|
if (dim == 0) {
|
|
|
|
|
// Currently GPU version does not support partitioning ‘FusedBatchNormEx’ in its param tensors.
|
|
|
|
|
if (ops[iter_ops]->type() == "FusedBatchNormEx" && iter_op_inputs != 0) {
|
|
|
|
@ -385,17 +394,27 @@ Strategys MakeDataParallelStrategy(const std::shared_ptr<Graph> &graph,
|
|
|
|
|
}
|
|
|
|
|
strategies.push_back(s);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Set default strategy.
|
|
|
|
|
graph->nodes[iter_graph].tensor_parm.tensor_str.str_n = 1.0;
|
|
|
|
|
graph->nodes[iter_graph].tensor_parm.tensor_str.str_c = 1.0;
|
|
|
|
|
graph->nodes[iter_graph].tensor_parm.tensor_str.str_h = 1.0;
|
|
|
|
|
graph->nodes[iter_graph].tensor_parm.tensor_str.str_w = 1.0;
|
|
|
|
|
|
|
|
|
|
// Update data parallel strategy.
|
|
|
|
|
if (ops[iter_ops]->outputs_tensor_info().size() == 0) {
|
|
|
|
|
MS_LOG(EXCEPTION) << ops[iter_ops]->name() << " output tensor info is empty.";
|
|
|
|
|
}
|
|
|
|
|
if (ops[iter_ops]->outputs_tensor_info()[0].shape().size() == 1) {
|
|
|
|
|
graph->nodes[iter_graph].tensor_parm.tensor_str.str_w = 1.0 / std::min(max_device_num, target_tensor_batch);
|
|
|
|
|
} else if (ops[iter_ops]->outputs_tensor_info()[0].shape().size() == 2) {
|
|
|
|
|
graph->nodes[iter_graph].tensor_parm.tensor_str.str_h = 1.0 / std::min(max_device_num, target_tensor_batch);
|
|
|
|
|
} else if (ops[iter_ops]->outputs_tensor_info()[0].shape().size() == 3) {
|
|
|
|
|
// Experimental support for 3D data.
|
|
|
|
|
graph->nodes[iter_graph].tensor_parm.tensor_str.str_c = 1.0 / std::min(max_device_num, target_tensor_batch);
|
|
|
|
|
} else if (ops[iter_ops]->outputs_tensor_info()[0].shape().size() == 4) {
|
|
|
|
|
graph->nodes[iter_graph].tensor_parm.tensor_str.str_n = 1.0 / std::min(max_device_num, target_tensor_batch);
|
|
|
|
|
} else {
|
|
|
|
|
MS_LOG(EXCEPTION) << ops[iter_ops]->name() << " output tensor shape is unexpected.";
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return strategies;
|
|
|
|
@ -416,7 +435,8 @@ Strategys PrepareStrategy(const std::shared_ptr<Graph> &graph, const std::vector
|
|
|
|
|
return PrepareMatMul(graph, ops, iter_graph, iter_ops);
|
|
|
|
|
} else if (type == ONEHOT) {
|
|
|
|
|
return PrepareOneHot(graph, ops, iter_graph, iter_ops);
|
|
|
|
|
} else if ((type == SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS) || (type == "_VirtualDataset") || (type == "Dropout")) {
|
|
|
|
|
} else if ((type == SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS) || (type == "_VirtualDataset") ||
|
|
|
|
|
(type == "FusedBatchNormEx") || (type == "Dropout")) {
|
|
|
|
|
return MakeDataParallelStrategy(graph, ops, iter_graph, iter_ops);
|
|
|
|
|
} else {
|
|
|
|
|
return MakeRecSearchStrategy(graph, ops, iter_graph, iter_ops);
|
|
|
|
@ -468,6 +488,11 @@ Dimensions CopyIncomingOperatorOutputStrategy(const std::shared_ptr<Graph> &grap
|
|
|
|
|
} else if (input_stra_dim == 2) {
|
|
|
|
|
s.push_back(1 / graph->nodes[iter_graph].tensor_parm.tensor_str.str_h);
|
|
|
|
|
s.push_back(1 / graph->nodes[iter_graph].tensor_parm.tensor_str.str_w);
|
|
|
|
|
} else if (input_stra_dim == 3) {
|
|
|
|
|
// Experimental support for 3D data.
|
|
|
|
|
s.push_back(1 / graph->nodes[iter_graph].tensor_parm.tensor_str.str_c);
|
|
|
|
|
s.push_back(1 / graph->nodes[iter_graph].tensor_parm.tensor_str.str_h);
|
|
|
|
|
s.push_back(1 / graph->nodes[iter_graph].tensor_parm.tensor_str.str_w);
|
|
|
|
|
} else if (input_stra_dim == 4) {
|
|
|
|
|
s.push_back(1 / graph->nodes[iter_graph].tensor_parm.tensor_str.str_n);
|
|
|
|
|
s.push_back(1 / graph->nodes[iter_graph].tensor_parm.tensor_str.str_c);
|
|
|
|
|