parent
bd845dd0b7
commit
14fe72f383
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,26 +1,26 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_single
|
||||
def test_expand_loss():
|
||||
sh_path = os.path.split(os.path.realpath(__file__))[0]
|
||||
ret = os.system(f"sh {sh_path}/run_auto_parallel_loss_expand.sh")
|
||||
assert (ret == 0)
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_single
|
||||
def test_expand_loss():
|
||||
sh_path = os.path.split(os.path.realpath(__file__))[0]
|
||||
ret = os.system(f"sh {sh_path}/run_auto_parallel_loss_expand.sh")
|
||||
assert ret == 0
|
||||
|
@ -1,22 +1,21 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import pytest
|
||||
|
||||
|
||||
def test_expand_loss():
|
||||
ret = os.system("sh run_onehot_model_parallel.sh")
|
||||
assert (ret == 0)
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
|
||||
|
||||
def test_expand_loss():
|
||||
ret = os.system("sh run_onehot_model_parallel.sh")
|
||||
assert ret == 0
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
|
||||
sys.path.append("../../..")
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
|
||||
sys.path.append("../../..")
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,120 +1,120 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.communication.management as distributedTool
|
||||
from mindspore import context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.nn import Dropout
|
||||
|
||||
device_num = 4
|
||||
device_id = int(os.environ["RANK_ID"])
|
||||
path = "./output/"
|
||||
|
||||
|
||||
def setup_module():
|
||||
print("~~~~~~~~~~~set up~~~~~~~~~~~~~")
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.set_auto_parallel_context(device_num=device_num, global_rank=device_id)
|
||||
distributedTool.init()
|
||||
distributedTool.create_group("0-3", [0, 1, 2, 3])
|
||||
print("~~~~~~~~~~~set up finished~~~~~~~~~~~~~")
|
||||
|
||||
|
||||
def teardown_module():
|
||||
print("~~~~~~~~~~~~tear down~~~~~~~~~~")
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, keep_prob, seed0, seed1, strategy=None):
|
||||
super(Net, self).__init__()
|
||||
self.drop = Dropout(keep_prob, seed0, seed1, dtype=ms.float32, strategy=strategy)
|
||||
|
||||
def construct(self, input):
|
||||
x = self.drop(input)
|
||||
return x
|
||||
|
||||
|
||||
# pylint: disable=comparison-with-itself
|
||||
class DropoutFactory:
|
||||
def __init__(self, input_shape, keep_prob, seed0, seed1, strategy0=None):
|
||||
size = 1
|
||||
prefix = ""
|
||||
for s in input_shape:
|
||||
prefix = prefix + str(s)
|
||||
size = size * s
|
||||
self.prefix = prefix
|
||||
number_range = min(10, size)
|
||||
self.input_np = np.reshape(np.arange(0, size) % number_range, input_shape).astype(np.float32)
|
||||
self.keep_prob = keep_prob
|
||||
self.seed0 = seed0
|
||||
self.seed1 = seed1
|
||||
self.strategy0 = strategy0
|
||||
need_dev_num = 1
|
||||
for s in strategy0[1]:
|
||||
need_dev_num = need_dev_num * s
|
||||
self.x_id = device_id % need_dev_num
|
||||
self.out_id = device_id % need_dev_num
|
||||
|
||||
def get_parallel_blocks(self, input_, strategy):
|
||||
blocks = [input_]
|
||||
i = 0
|
||||
for stra in strategy:
|
||||
temp = []
|
||||
while len(blocks) > 0:
|
||||
block = blocks.pop(0)
|
||||
temp.extend(np.split(block, stra, axis=i))
|
||||
blocks.extend(temp)
|
||||
i += 1
|
||||
return blocks
|
||||
|
||||
def d4_tensor_compare(self, input, out_me):
|
||||
[a, b, c, d] = input.shape
|
||||
for i in range(a):
|
||||
for j in range(b):
|
||||
for k in range(c):
|
||||
for e in range(d):
|
||||
if out_me[i, j, k, e] == 0:
|
||||
assert True == True
|
||||
else:
|
||||
assert np.allclose(out_me[i, j, k, e], input[i, j, k, e] * (1 / 0.4), 0.0001, 0.0001)
|
||||
|
||||
def forward_mindspore_parallel_impl(self):
|
||||
x = Tensor(self.input_np)
|
||||
inputs_x = self.get_parallel_blocks(self.input_np, self.strategy0[1])
|
||||
x1 = Tensor(inputs_x[self.x_id])
|
||||
net = Net(0.4, 0, 0, strategy=self.strategy0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
out = net(x, parallel_inputs_compile=[x], parallel_inputs_run=[x1])
|
||||
return out.asnumpy()
|
||||
|
||||
def forward_cmp(self):
|
||||
out_mindspore_parallel = self.forward_mindspore_parallel_impl()
|
||||
input_blocks = self.get_parallel_blocks(self.input_np, self.strategy0[1])
|
||||
self.d4_tensor_compare(input_blocks[self.out_id], out_mindspore_parallel)
|
||||
|
||||
|
||||
def test_reid_dropout_forward_seed_F32_64_512_8_8():
|
||||
fact = DropoutFactory(input_shape=(64, 512, 8, 8), keep_prob=0.4, seed0=0, seed1=0, strategy0=(0, (4, 1, 1, 1)))
|
||||
fact.forward_cmp()
|
||||
|
||||
|
||||
def test_reid_dropout_forward_seed_F32_64_512_8_8_repeat():
|
||||
fact = DropoutFactory(input_shape=(64, 512, 8, 8), keep_prob=0.4, seed0=0, seed1=0, strategy0=(0, (2, 1, 1, 1)))
|
||||
fact.forward_cmp()
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.communication.management as distributedTool
|
||||
from mindspore import context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.nn import Dropout
|
||||
|
||||
device_num = 4
|
||||
device_id = int(os.environ["RANK_ID"])
|
||||
path = "./output/"
|
||||
|
||||
|
||||
def setup_module():
|
||||
print("~~~~~~~~~~~set up~~~~~~~~~~~~~")
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.set_auto_parallel_context(device_num=device_num, global_rank=device_id)
|
||||
distributedTool.init()
|
||||
distributedTool.create_group("0-3", [0, 1, 2, 3])
|
||||
print("~~~~~~~~~~~set up finished~~~~~~~~~~~~~")
|
||||
|
||||
|
||||
def teardown_module():
|
||||
print("~~~~~~~~~~~~tear down~~~~~~~~~~")
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, keep_prob, seed0, seed1, strategy=None):
|
||||
super(Net, self).__init__()
|
||||
self.drop = Dropout(keep_prob, seed0, seed1, dtype=ms.float32, strategy=strategy)
|
||||
|
||||
def construct(self, input_):
|
||||
x = self.drop(input_)
|
||||
return x
|
||||
|
||||
|
||||
# pylint: disable=comparison-with-itself
|
||||
class DropoutFactory:
|
||||
def __init__(self, input_shape, keep_prob, seed0, seed1, strategy0=None):
|
||||
size = 1
|
||||
prefix = ""
|
||||
for s in input_shape:
|
||||
prefix = prefix + str(s)
|
||||
size = size * s
|
||||
self.prefix = prefix
|
||||
number_range = min(10, size)
|
||||
self.input_np = np.reshape(np.arange(0, size) % number_range, input_shape).astype(np.float32)
|
||||
self.keep_prob = keep_prob
|
||||
self.seed0 = seed0
|
||||
self.seed1 = seed1
|
||||
self.strategy0 = strategy0
|
||||
need_dev_num = 1
|
||||
for s in strategy0[1]:
|
||||
need_dev_num = need_dev_num * s
|
||||
self.x_id = device_id % need_dev_num
|
||||
self.out_id = device_id % need_dev_num
|
||||
|
||||
def get_parallel_blocks(self, input_, strategy):
|
||||
blocks = [input_]
|
||||
i = 0
|
||||
for stra in strategy:
|
||||
temp = []
|
||||
while len(blocks) > 0:
|
||||
block = blocks.pop(0)
|
||||
temp.extend(np.split(block, stra, axis=i))
|
||||
blocks.extend(temp)
|
||||
i += 1
|
||||
return blocks
|
||||
|
||||
def d4_tensor_compare(self, input_, out_me):
|
||||
[a, b, c, d] = input_.shape
|
||||
for i in range(a):
|
||||
for j in range(b):
|
||||
for k in range(c):
|
||||
for e in range(d):
|
||||
if out_me[i, j, k, e] == 0:
|
||||
assert True
|
||||
else:
|
||||
assert np.allclose(out_me[i, j, k, e], input_[i, j, k, e] * (1 / 0.4), 0.0001, 0.0001)
|
||||
|
||||
def forward_mindspore_parallel_impl(self):
|
||||
x = Tensor(self.input_np)
|
||||
inputs_x = self.get_parallel_blocks(self.input_np, self.strategy0[1])
|
||||
x1 = Tensor(inputs_x[self.x_id])
|
||||
net = Net(0.4, 0, 0, strategy=self.strategy0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
out = net(x, parallel_inputs_compile=[x], parallel_inputs_run=[x1])
|
||||
return out.asnumpy()
|
||||
|
||||
def forward_cmp(self):
|
||||
out_mindspore_parallel = self.forward_mindspore_parallel_impl()
|
||||
input_blocks = self.get_parallel_blocks(self.input_np, self.strategy0[1])
|
||||
self.d4_tensor_compare(input_blocks[self.out_id], out_mindspore_parallel)
|
||||
|
||||
|
||||
def test_reid_dropout_forward_seed_F32_64_512_8_8():
|
||||
fact = DropoutFactory(input_shape=(64, 512, 8, 8), keep_prob=0.4, seed0=0, seed1=0, strategy0=(0, (4, 1, 1, 1)))
|
||||
fact.forward_cmp()
|
||||
|
||||
|
||||
def test_reid_dropout_forward_seed_F32_64_512_8_8_repeat():
|
||||
fact = DropoutFactory(input_shape=(64, 512, 8, 8), keep_prob=0.4, seed0=0, seed1=0, strategy0=(0, (2, 1, 1, 1)))
|
||||
fact.forward_cmp()
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue