|
|
|
@ -367,15 +367,15 @@ class Print(PrimitiveWithInfer):
|
|
|
|
|
|
|
|
|
|
Note:
|
|
|
|
|
In pynative mode, please use python print function.
|
|
|
|
|
In graph mode, the bool, int, float, tuple, and list would be converted into Tensor to print,
|
|
|
|
|
In graph mode, the bool, int and float would be converted into Tensor to print,
|
|
|
|
|
str remains unchanged.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
- **input_x** (Union[Tensor, bool, int, float, str, tuple, list]) - The graph node to attach to.
|
|
|
|
|
- **input_x** (Union[Tensor, bool, int, float, str]) - The graph node to attach to.
|
|
|
|
|
Supports multiple inputs which are separated by ','.
|
|
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
|
TypeError: If `input_x` is not one of the following: Tensor, bool, int, float, str, tuple, list.
|
|
|
|
|
TypeError: If `input_x` is not one of the following: Tensor, bool, int, float, str.
|
|
|
|
|
|
|
|
|
|
Supported Platforms:
|
|
|
|
|
``Ascend`` ``GPU``
|
|
|
|
@ -415,12 +415,9 @@ class Print(PrimitiveWithInfer):
|
|
|
|
|
def infer_dtype(self, *inputs):
|
|
|
|
|
# check argument types except the last one (io state).
|
|
|
|
|
for ele in inputs[:-1]:
|
|
|
|
|
if isinstance(ele, (tuple, list)):
|
|
|
|
|
self.infer_dtype(*ele)
|
|
|
|
|
else:
|
|
|
|
|
validator.check_subclass("input", ele,
|
|
|
|
|
[mstype.tensor, mstype.int_, mstype.float_, mstype.bool_, mstype.string],
|
|
|
|
|
self.name)
|
|
|
|
|
validator.check_subclass("input", ele,
|
|
|
|
|
[mstype.tensor, mstype.int_, mstype.float_, mstype.bool_, mstype.string],
|
|
|
|
|
self.name)
|
|
|
|
|
return mstype.int32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|