!14267 add unet++ 310 mindir infer and update unet 310 infer code

From: @lihongkang1
Reviewed-by: @c_34,@wuxuejian
Signed-off-by: @c_34
pull/14267/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 155ac84906

@ -42,11 +42,17 @@ using mindspore::MSTensor;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::dataset::vision::Decode;
using mindspore::dataset::vision::SwapRedBlue;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::HWC2CHW;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(dataset_path, ".", "dataset path");
DEFINE_int32(device_id, 0, "device id");
DEFINE_string(need_preprocess, "n", "need preprocess or not");
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
@ -78,6 +84,14 @@ int main(int argc, char **argv) {
std::map<double, double> costTime_map;
size_t size = all_files.size();
auto decode(new Decode());
auto swapredblue(new SwapRedBlue());
auto resize(new Resize({96, 96}));
auto normalize(new Normalize({127.5, 127.5, 127.5}, {127.5, 127.5, 127.5}));
auto hwc2chw(new HWC2CHW());
Execute preprocess({decode, swapredblue, resize, normalize, hwc2chw});
for (size_t i = 0; i < size; ++i) {
struct timeval start = {0};
struct timeval end = {0};
@ -86,7 +100,17 @@ int main(int argc, char **argv) {
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << all_files[i] << std::endl;
auto img = ReadFileToTensor(all_files[i]);
auto img = MSTensor();
if (FLAGS_need_preprocess == "y") {
ret = preprocess(ReadFileToTensor(all_files[i]), &img);
if (ret != kSuccess) {
std::cout << "preprocess " << all_files[i] << " failed." << std::endl;
return 1;
}
} else {
img = ReadFileToTensor(all_files[i]);
}
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
img.Data().get(), img.DataSize());

@ -21,6 +21,7 @@ from mindspore import Tensor, export, load_checkpoint, load_param_into_net, cont
from src.unet_medical.unet_model import UNetMedical
from src.unet_nested import NestedUNet, UNet
from src.config import cfg_unet as cfg
from src.utils import UnetEval
parser = argparse.ArgumentParser(description='unet export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
@ -52,5 +53,6 @@ if __name__ == "__main__":
param_dict = load_checkpoint(args.ckpt_file)
# load the parameter into net
load_param_into_net(net, param_dict)
net = UnetEval(net)
input_data = Tensor(np.ones([args.batch_size, cfg["num_channels"], args.height, args.width]).astype(np.float32))
export(net, input_data, file_name=args.file_name, file_format=args.file_format)

@ -15,53 +15,77 @@
"""unet 310 infer."""
import os
import argparse
import cv2
import numpy as np
from src.data_loader import create_dataset
from src.data_loader import create_dataset, create_cell_nuclei_dataset
from src.config import cfg_unet
from scipy.special import softmax
class dice_coeff():
def __init__(self):
self.clear()
def clear(self):
self._dice_coeff_sum = 0
self._iou_sum = 0
self._samples_num = 0
def update(self, *inputs):
if len(inputs) != 2:
raise ValueError('Mean dice coefficient need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
y_pred = inputs[0]
raise ValueError('Need 2 inputs ((y_softmax, y_argmax), y), but got {}'.format(len(inputs)))
y = np.array(inputs[1])
self._samples_num += y.shape[0]
y_pred = y_pred.transpose(0, 2, 3, 1)
y = y.transpose(0, 2, 3, 1)
y_pred = softmax(y_pred, axis=3)
b, h, w, c = y.shape
if b != 1:
raise ValueError('Batch size should be 1 when in evaluation.')
y = y.reshape((h, w, c))
if cfg_unet["eval_activate"].lower() == "softmax":
y_softmax = np.squeeze(inputs[0][0], axis=0)
if cfg_unet["eval_resize"]:
y_pred = []
for m in range(cfg_unet["num_classes"]):
y_pred.append(cv2.resize(np.uint8(y_softmax[:, :, m] * 255), (w, h)) / 255)
y_pred = np.stack(y_pred, axis=-1)
else:
y_pred = y_softmax
elif cfg_unet["eval_activate"].lower() == "argmax":
y_argmax = np.squeeze(inputs[0][1], axis=0)
y_pred = []
for n in range(cfg_unet["num_classes"]):
if cfg_unet["eval_resize"]:
y_pred.append(cv2.resize(np.uint8(y_argmax == n), (w, h), interpolation=cv2.INTER_NEAREST))
else:
y_pred.append(np.float32(y_argmax == n))
y_pred = np.stack(y_pred, axis=-1)
else:
raise ValueError('config eval_activate should be softmax or argmax.')
y_pred = y_pred.astype(np.float32)
inter = np.dot(y_pred.flatten(), y.flatten())
union = np.dot(y_pred.flatten(), y_pred.flatten()) + np.dot(y.flatten(), y.flatten())
single_dice_coeff = 2*float(inter)/float(union+1e-6)
print("single dice coeff is:", single_dice_coeff)
single_iou = single_dice_coeff / (2 - single_dice_coeff)
print("single dice coeff is: {}, IOU is: {}".format(single_dice_coeff, single_iou))
self._dice_coeff_sum += single_dice_coeff
self._iou_sum += single_iou
def eval(self):
if self._samples_num == 0:
raise RuntimeError('Total samples num must not be 0.')
return self._dice_coeff_sum / float(self._samples_num)
return (self._dice_coeff_sum / float(self._samples_num), self._iou_sum / float(self._samples_num))
def test_net(data_dir,
cross_valid_ind=1,
cfg=None):
_, valid_dataset = create_dataset(data_dir, 1, 1, False, cross_valid_ind, False, do_crop=cfg['crop'],
img_size=cfg['img_size'])
if 'dataset' in cfg and cfg['dataset'] == "Cell_nuclei":
valid_dataset = create_cell_nuclei_dataset(data_dir, cfg['img_size'], 1, 1, is_train=False,
eval_resize=cfg["eval_resize"], split=0.8)
else:
_, valid_dataset = create_dataset(data_dir, 1, 1, False, cross_valid_ind, False, do_crop=cfg['crop'],
img_size=cfg['img_size'])
labels_list = []
for data in valid_dataset:
@ -89,10 +113,25 @@ if __name__ == '__main__':
rst_path = args.rst_path
metrics = dice_coeff()
for j in range(len(os.listdir(rst_path))):
file_name = rst_path + "ISBI_test_bs_1_" + str(j) + "_0" + ".bin"
output = np.fromfile(file_name, np.float32).reshape(1, 2, 576, 576)
label = label_list[j]
metrics.update(output, label)
print("Cross valid dice coeff is: ", metrics.eval())
if 'dataset' in cfg_unet and cfg_unet['dataset'] == "Cell_nuclei":
for i, bin_name in enumerate(os.listdir('./preprocess_Result/')):
bin_name_softmax = bin_name.replace(".png", "") + "_0.bin"
bin_name_argmax = bin_name.replace(".png", "") + "_1.bin"
file_name_sof = rst_path + bin_name_softmax
file_name_arg = rst_path + bin_name_argmax
softmax_out = np.fromfile(file_name_sof, np.float32).reshape(1, 96, 96, 2)
argmax_out = np.fromfile(file_name_arg, np.float32).reshape(1, 96, 96)
label = label_list[i]
metrics.update((softmax_out, argmax_out), label)
else:
for j in range(len(os.listdir('./preprocess_Result/'))):
file_name_sof = rst_path + "ISBI_test_bs_1_" + str(j) + "_0" + ".bin"
file_name_arg = rst_path + "ISBI_test_bs_1_" + str(j) + "_1" + ".bin"
softmax_out = np.fromfile(file_name_sof, np.float32).reshape(1, 576, 576, 2)
argmax_out = np.fromfile(file_name_arg, np.float32).reshape(1, 576, 576)
label = label_list[j]
metrics.update((softmax_out, argmax_out), label)
eval_score = metrics.eval()
print("============== Cross valid dice coeff is:", eval_score[0])
print("============== Cross valid IOU is:", eval_score[1])

@ -14,6 +14,10 @@
# ============================================================================
"""unet 310 infer preprocess dataset"""
import argparse
import os
import numpy as np
import cv2
from src.data_loader import create_dataset
from src.config import cfg_unet
@ -29,6 +33,56 @@ def preprocess_dataset(data_dir, result_path, cross_valid_ind=1, cfg=None):
data[0].asnumpy().tofile(file_path)
class CellNucleiDataset:
"""
Cell nuclei dataset preprocess class.
"""
def __init__(self, data_dir, repeat, result_path, is_train=False, split=0.8):
self.data_dir = data_dir
self.img_ids = sorted(next(os.walk(self.data_dir))[1])
self.train_ids = self.img_ids[:int(len(self.img_ids) * split)] * repeat
np.random.shuffle(self.train_ids)
self.val_ids = self.img_ids[int(len(self.img_ids) * split):]
self.is_train = is_train
self.result_path = result_path
self._preprocess_dataset()
def _preprocess_dataset(self):
for img_id in self.val_ids:
path = os.path.join(self.data_dir, img_id)
img = cv2.imread(os.path.join(path, "images", img_id + ".png"))
if len(img.shape) == 2:
img = np.expand_dims(img, axis=-1)
img = np.concatenate([img, img, img], axis=-1)
mask = []
for mask_file in next(os.walk(os.path.join(path, "masks")))[2]:
mask_ = cv2.imread(os.path.join(path, "masks", mask_file), cv2.IMREAD_GRAYSCALE)
mask.append(mask_)
mask = np.max(mask, axis=0)
cv2.imwrite(os.path.join(self.result_path, img_id + ".png"), img)
def _read_img_mask(self, img_id):
path = os.path.join(self.data_dir, img_id)
img = cv2.imread(os.path.join(path, "image.png"))
mask = cv2.imread(os.path.join(path, "mask.png"), cv2.IMREAD_GRAYSCALE)
return img, mask
def __getitem__(self, index):
if self.is_train:
return self._read_img_mask(self.train_ids[index])
return self._read_img_mask(self.val_ids[index])
@property
def column_names(self):
column_names = ['image', 'mask']
return column_names
def __len__(self):
if self.is_train:
return len(self.train_ids)
return len(self.val_ids)
def get_args():
parser = argparse.ArgumentParser(description='Preprocess the UNet dataset ',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
@ -42,5 +96,8 @@ def get_args():
if __name__ == '__main__':
args = get_args()
preprocess_dataset(data_dir=args.data_url, cross_valid_ind=cfg_unet['cross_valid_ind'], cfg=cfg_unet, result_path=
args.result_path)
if 'dataset' in cfg_unet and cfg_unet['dataset'] == "Cell_nuclei":
cell_dataset = CellNucleiDataset(args.data_url, 1, args.result_path, False, 0.8)
else:
preprocess_dataset(data_dir=args.data_url, cross_valid_ind=cfg_unet['cross_valid_ind'], cfg=cfg_unet,
result_path=args.result_path)

@ -14,9 +14,10 @@
# limitations under the License.
# ============================================================================
if [[ $# -lt 2 || $# -gt 3 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
if [[ $# -lt 3 || $# -gt 4 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID] [NEED_PREPROCESS]
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero.
NEED_PREPROCESS means weather need preprocess or not, it's value is 'y' or 'n'."
exit 1
fi
@ -29,7 +30,7 @@ get_real_path(){
}
model=$(get_real_path $1)
data_path=$(get_real_path $2)
if [ $# == 3 ]; then
if [ $# == 4 ]; then
device_id=$3
if [ -z $device_id ]; then
device_id=0
@ -37,10 +38,12 @@ if [ $# == 3 ]; then
device_id=$device_id
fi
fi
need_preprocess=$4
echo "mindir name: "$model
echo "dataset path: "$data_path
echo "device id: "$device_id
echo "need preprocess or not: "$need_preprocess
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
@ -85,7 +88,7 @@ function infer()
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/src/main --mindir_path=$model --dataset_path=./preprocess_Result/ --device_id=$device_id &> infer.log
../ascend310_infer/src/main --mindir_path=$model --dataset_path=./preprocess_Result/ --device_id=$device_id --need_preprocess=$need_preprocess &> infer.log
}
function cal_acc()

Loading…
Cancel
Save