parent
c478be0ff0
commit
19ee376cd3
@ -0,0 +1,112 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "pre_activate/ascend/ir_fusion/confusion_mul_grad_fusion.h"
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include "session/anf_runtime_algorithm.h"
|
||||
#include "ir/primitive.h"
|
||||
#include "utils/utils.h"
|
||||
#include "pipeline/static_analysis/abstract_value.h"
|
||||
#include "pre_activate/common/helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
namespace {
|
||||
const size_t kConfusionMulGradOutputNum = 2;
|
||||
|
||||
CNodePtr CreateFusionNode(const FuncGraphPtr &graph, const CNodePtr &reduce_sum, const AnfNodePtr &mul0_anf,
|
||||
const AnfNodePtr &input3) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(reduce_sum);
|
||||
MS_EXCEPTION_IF_NULL(mul0_anf);
|
||||
MS_EXCEPTION_IF_NULL(input3);
|
||||
auto mul0 = mul0_anf->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(mul0);
|
||||
|
||||
auto prim = std::make_shared<Primitive>(kConfusionMulGradOpName);
|
||||
std::vector<AnfNodePtr> inputs = {NewValueNode(prim), mul0->input(1), mul0->input(2), input3};
|
||||
auto fusion_node = graph->NewCNode(inputs);
|
||||
MS_EXCEPTION_IF_NULL(fusion_node);
|
||||
fusion_node->set_scope(reduce_sum->scope());
|
||||
AnfAlgo::CopyNodeAttr(kAttrAxis, reduce_sum, fusion_node);
|
||||
AnfAlgo::CopyNodeAttr(kAttrKeepDims, reduce_sum, fusion_node);
|
||||
auto types = {AnfAlgo::GetOutputInferDataType(mul0, 0), AnfAlgo::GetOutputInferDataType(reduce_sum, 0)};
|
||||
auto shapes = {AnfAlgo::GetOutputInferShape(mul0, 0), AnfAlgo::GetOutputInferShape(reduce_sum, 0)};
|
||||
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, fusion_node.get());
|
||||
return fusion_node;
|
||||
}
|
||||
|
||||
AnfNodePtr GetMul0(const FuncGraphPtr &graph, const AnfNodePtr &input2, const AnfNodePtr &mul1) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(input2);
|
||||
auto manager = graph->manager();
|
||||
MS_EXCEPTION_IF_NULL(manager);
|
||||
if (manager->node_users().find(input2) == manager->node_users().end()) {
|
||||
MS_LOG(EXCEPTION) << "node has no output in manager";
|
||||
}
|
||||
|
||||
AnfNodePtr mul0 = nullptr;
|
||||
const AnfNodeIndexSet &outputs_set = manager->node_users()[input2];
|
||||
// input2 must be the 2rd input of mul0
|
||||
auto it = std::find_if(outputs_set.begin(), outputs_set.end(), [&mul1](const std::pair<AnfNodePtr, int> &node_index) {
|
||||
return node_index.first != mul1 && node_index.second == 2;
|
||||
});
|
||||
if (it != outputs_set.end() && AnfAlgo::GetCNodeName(it->first) == prim::kPrimMul->name()) {
|
||||
mul0 = it->first;
|
||||
}
|
||||
return mul0;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
const BaseRef ConfusionMulGradFusion::DefinePattern() const {
|
||||
VectorRef mul1({prim::kPrimMul, input3_, input2_});
|
||||
VectorRef reduce_sum({prim::kPrimReduceSum, mul1});
|
||||
return reduce_sum;
|
||||
}
|
||||
|
||||
const AnfNodePtr ConfusionMulGradFusion::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
|
||||
const EquivPtr &equiv) const {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
MS_EXCEPTION_IF_NULL(equiv);
|
||||
auto input2 = utils::cast<AnfNodePtr>((*equiv)[input2_]);
|
||||
auto input3 = utils::cast<AnfNodePtr>((*equiv)[input3_]);
|
||||
auto reduce_sum = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(reduce_sum);
|
||||
auto mul1 = reduce_sum->input(1);
|
||||
if (IsUsedByOthers(graph, mul1)) {
|
||||
MS_LOG(INFO) << "Mul1 is used by others, quit fusion!";
|
||||
return nullptr;
|
||||
}
|
||||
auto mul0 = GetMul0(graph, input2, mul1);
|
||||
if (mul0 == nullptr) {
|
||||
MS_LOG(INFO) << "Mul0 do not exist, quit fusion";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto fusion_node = CreateFusionNode(graph, reduce_sum, mul0, input3);
|
||||
std::vector<AnfNodePtr> fusion_node_outputs;
|
||||
CreateMultipleOutputsOfAnfNode(graph, fusion_node, kConfusionMulGradOutputNum, &fusion_node_outputs);
|
||||
|
||||
auto manage = graph->manager();
|
||||
MS_EXCEPTION_IF_NULL(manage);
|
||||
manage->Replace(mul0, fusion_node_outputs[0]);
|
||||
return fusion_node_outputs[1];
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
@ -0,0 +1,41 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_CONFUSION_MUL_GRAD_FUSION_H_
|
||||
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_CONFUSION_MUL_GRAD_FUSION_H_
|
||||
|
||||
#include <memory>
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class ConfusionMulGradFusion : public PatternProcessPass {
|
||||
public:
|
||||
explicit ConfusionMulGradFusion(bool multigraph = true)
|
||||
: PatternProcessPass("confusion_mul_grad_fusion", multigraph) {
|
||||
input2_ = std::make_shared<Var>();
|
||||
input3_ = std::make_shared<Var>();
|
||||
}
|
||||
~ConfusionMulGradFusion() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
|
||||
private:
|
||||
VarPtr input2_;
|
||||
VarPtr input3_;
|
||||
};
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_CONFUSION_MUL_GRAD_FUSION_H_
|
@ -0,0 +1,54 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "common/backend_common_test.h"
|
||||
#include "common/py_func_graph_fetcher.h"
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
#include "pre_activate/ascend/ir_fusion/confusion_mul_grad_fusion.h"
|
||||
#include "debug/anf_ir_dump.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class TestHWOptimizeConfusionMulGradFusion : public BackendCommon {
|
||||
public:
|
||||
TestHWOptimizeConfusionMulGradFusion() : get_py_fun_("gtest_input.pre_activate.confusion_mul_grad_fusion", true) {}
|
||||
~TestHWOptimizeConfusionMulGradFusion() override = default;
|
||||
|
||||
UT::PyFuncGraphFetcher get_py_fun_;
|
||||
};
|
||||
|
||||
TEST_F(TestHWOptimizeConfusionMulGradFusion, test_fusion) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_confusion_mul_grad_fusion", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp{1, 1, 1, 1};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||
AbstractBasePtrList args_spec_list;
|
||||
for (size_t i = 0; i < 3; ++i) {
|
||||
args_spec_list.push_back(x_abstract);
|
||||
}
|
||||
auto fg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
pm->AddPass(std::make_shared<opt::ConfusionMulGradFusion>());
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(fg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_confusion_mul_grad_fusion", "after");
|
||||
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||
}
|
||||
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
@ -0,0 +1,55 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import Primitive
|
||||
|
||||
mul = P.Mul()
|
||||
reduce_sum = P.ReduceSum()
|
||||
confusion_mul_grad = Primitive('ConfusionMulGrad')
|
||||
make_tuple = Primitive('make_tuple')
|
||||
tuple_getitem = Primitive('tuple_getitem')
|
||||
axis = 2
|
||||
|
||||
class FnDict:
|
||||
def __init__(self):
|
||||
self.fnDict = {}
|
||||
|
||||
def __call__(self, fn):
|
||||
self.fnDict[fn.__name__] = fn
|
||||
|
||||
def __getitem__(self, name):
|
||||
return self.fnDict[name]
|
||||
|
||||
def test_confusion_mul_grad_fusion(tag):
|
||||
fns = FnDict()
|
||||
|
||||
@fns
|
||||
def before(input1, input2, input3):
|
||||
output1 = mul(input1, input2)
|
||||
mul1 = mul(input3, input2)
|
||||
# input axis will be convert to attr in step ConstructKernelGraph
|
||||
output2 = reduce_sum(mul1, axis)
|
||||
res = make_tuple(output1, output2)
|
||||
return res
|
||||
|
||||
@fns
|
||||
def after(input1, input2, input3):
|
||||
res = confusion_mul_grad(input1, input2, input3)
|
||||
item0 = tuple_getitem(res, 0)
|
||||
item1 = tuple_getitem(res, 1)
|
||||
res = make_tuple(item0, item1)
|
||||
return make_tuple(res)
|
||||
|
||||
return fns[tag]
|
Loading…
Reference in new issue