commit
1a3c06a948
@ -1,55 +0,0 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""
|
||||
network config setting, will be used in main.py
|
||||
"""
|
||||
|
||||
from easydict import EasyDict as edict
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.model_zoo.Bert_NEZHA import BertConfig
|
||||
bert_cfg = edict({
|
||||
'epoch_size': 10,
|
||||
'num_warmup_steps': 0,
|
||||
'start_learning_rate': 1e-4,
|
||||
'end_learning_rate': 1,
|
||||
'decay_steps': 1000,
|
||||
'power': 10.0,
|
||||
'save_checkpoint_steps': 2000,
|
||||
'keep_checkpoint_max': 10,
|
||||
'checkpoint_prefix': "checkpoint_bert",
|
||||
'DATA_DIR' = "/your/path/examples.tfrecord"
|
||||
'SCHEMA_DIR' = "/your/path/datasetSchema.json"
|
||||
'bert_config': BertConfig(
|
||||
batch_size=16,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
)
|
||||
})
|
@ -0,0 +1,57 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""
|
||||
network config setting, will be used in train.py
|
||||
"""
|
||||
|
||||
from easydict import EasyDict as edict
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.model_zoo.Bert_NEZHA import BertConfig
|
||||
bert_train_cfg = edict({
|
||||
'epoch_size': 10,
|
||||
'num_warmup_steps': 0,
|
||||
'start_learning_rate': 1e-4,
|
||||
'end_learning_rate': 0.0,
|
||||
'decay_steps': 1000,
|
||||
'power': 10.0,
|
||||
'save_checkpoint_steps': 2000,
|
||||
'keep_checkpoint_max': 10,
|
||||
'checkpoint_prefix': "checkpoint_bert",
|
||||
# please add your own dataset path
|
||||
'DATA_DIR': "/your/path/examples.tfrecord",
|
||||
# please add your own dataset schema path
|
||||
'SCHEMA_DIR': "/your/path/datasetSchema.json"
|
||||
})
|
||||
bert_net_cfg = BertConfig(
|
||||
batch_size=16,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
)
|
Loading…
Reference in new issue