parent
09ee838320
commit
1ba7fd1c44
@ -0,0 +1,58 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/square_sum_all_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/util.cuh"
|
||||
|
||||
template <typename T>
|
||||
__global__ void SquareSumAllKernel(const size_t size, const T* input_addr_0, const T* input_addr_1,
|
||||
T* output_addr_0, T* output_addr_1) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
|
||||
size_t split = size / 2;
|
||||
if (i < split) {
|
||||
T ret = input_addr_0[i] * input_addr_0[i];
|
||||
MsAtomicAdd(output_addr_0, ret);
|
||||
} else {
|
||||
T ret = input_addr_1[i - split] * input_addr_1[i - split];
|
||||
MsAtomicAdd(output_addr_1, ret);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void InitOutput(const size_t size, T *output) {
|
||||
T zero = 0;
|
||||
for (size_t id = blockIdx.x * blockDim.x + threadIdx.x; id < size; id += blockDim.x * gridDim.x) {
|
||||
output[id] = zero;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SquareSumAll(const size_t input_size_, const T* input_addr_0, const T* input_addr_1,
|
||||
T* output_addr_0, T* output_addr_1, cudaStream_t cuda_stream) {
|
||||
InitOutput<<<GET_BLOCKS(1), GET_THREADS, 0, cuda_stream>>>(1, output_addr_0);
|
||||
InitOutput<<<GET_BLOCKS(1), GET_THREADS, 0, cuda_stream>>>(1, output_addr_1);
|
||||
size_t size = input_size_ * 2;
|
||||
SquareSumAllKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input_addr_0, input_addr_1,
|
||||
output_addr_0, output_addr_1);
|
||||
}
|
||||
|
||||
template void SquareSumAll(const size_t input_size_, const half* input_addr_0, const half* input_addr_1,
|
||||
half* output_addr_0, half* output_addr_1, cudaStream_t cuda_stream);
|
||||
template void SquareSumAll(const size_t input_size_, const float* input_addr_0, const float* input_addr_1,
|
||||
float* output_addr_0, float* output_addr_1, cudaStream_t cuda_stream);
|
@ -0,0 +1,25 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SQUARE_SUM_ALL_IMPL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SQUARE_SUM_ALL_IMPL_H_
|
||||
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
template <typename T>
|
||||
void SquareSumAll(const size_t input_size_, const T* input_addr_0, const T* input_addr_1,
|
||||
T* output_addr_0, T* output_addr_1, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SQUARE_SUM_ALL_IMPL_H_
|
@ -0,0 +1,38 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/math/square_sum_all_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(SquareSumAll,
|
||||
KernelAttr()
|
||||
.AddAllSameAttr(true)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
SquareSumAllGpuFwdKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(SquareSumAll,
|
||||
KernelAttr()
|
||||
.AddAllSameAttr(true)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SquareSumAllGpuFwdKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,84 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SQUARE_SUM_ALL_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SQUARE_SUM_ALL_GPU_KERNEL_H_
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/square_sum_all_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class SquareSumAllGpuFwdKernel : public GpuKernel {
|
||||
public:
|
||||
SquareSumAllGpuFwdKernel() : input_size_(1), is_null_input_(false) {}
|
||||
~SquareSumAllGpuFwdKernel() override {}
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
if (is_null_input_) {
|
||||
return true;
|
||||
}
|
||||
T *input_addr_0 = GetDeviceAddress<T>(inputs, 0);
|
||||
T *input_addr_1 = GetDeviceAddress<T>(inputs, 1);
|
||||
T *output_addr_0 = GetDeviceAddress<T>(outputs, 0);
|
||||
T *output_addr_1 = GetDeviceAddress<T>(outputs, 1);
|
||||
SquareSumAll(input_size_, input_addr_0, input_addr_1, output_addr_0, output_addr_1,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "SquareSumAllGpuFwdKernel input is null";
|
||||
}
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
output_size_list_.push_back(sizeof(T));
|
||||
output_size_list_.push_back(sizeof(T));
|
||||
workspace_size_list_.push_back(0);
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
|
||||
size_t input_size_;
|
||||
bool is_null_input_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SQUARE_SUM_ALL_GPU_KERNEL_H_
|
Loading…
Reference in new issue