!1826 fix bug when check learning_rate in AdamWeightDecayDynamicLR

Merge pull request !1826 from wangnan39/fix_lr_check_bug_in_adamweightdecay_dynamic_lr
pull/1826/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit 1c640face9

@ -26,8 +26,6 @@ from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from .optimizer import Optimizer
_learning_rate_update_func = ['linear', 'cos', 'sin']
adam_opt = C.MultitypeFuncGraph("adam_opt")
@ -94,10 +92,10 @@ def _check_param_value(beta1, beta2, eps, weight_decay, prim_name):
def _check_learning_rate_value(learning_rate, end_learning_rate, decay_steps, power, prim_name):
"""Check the type of inputs."""
validator.check_float_positive('learning_rate', learning_rate, prim_name)
validator.check_float_legal_value('learning_rate', learning_rate, prim_name)
validator.check_float_positive('end_learning_rate', end_learning_rate, prim_name)
validator.check_float_legal_value('end_learning_rate', end_learning_rate, prim_name)
validator.check_value_type("learning_rate", learning_rate, [float], prim_name)
validator.check_number_range("learning_rate", learning_rate, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
validator.check_value_type("end_learning_rate", end_learning_rate, [float], prim_name)
validator.check_number_range("end_learning_rate", end_learning_rate, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
validator.check_float_positive('power', power, prim_name)
validator.check_float_legal_value('power', power, prim_name)
validator.check_integer('decay_steps', decay_steps, 0, Rel.GT, prim_name)
@ -363,7 +361,7 @@ class AdamWeightDecayDynamicLR(Optimizer):
eps=1e-6,
weight_decay=0.0,
decay_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name):
super(AdamWeightDecayDynamicLR, self).__init__(learning_rate, params)
super(AdamWeightDecayDynamicLR, self).__init__(0.0, params)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)

@ -111,10 +111,12 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, para
def _check_param_value(decay_steps, warmup_steps, start_learning_rate,
end_learning_rate, power, beta1, beta2, eps, weight_decay, prim_name):
"""Check the type of inputs."""
validator.check_float_positive('start_learning_rate', start_learning_rate, prim_name)
validator.check_float_legal_value('start_learning_rate', start_learning_rate, prim_name)
validator.check_value_type("start_learning_rate", start_learning_rate, [float], prim_name)
validator.check_number_range("start_learning_rate rate", start_learning_rate, 0.0, float("inf"), Rel.INC_LEFT,
prim_name)
validator.check_value_type("end_learning_rate", end_learning_rate, [float], prim_name)
validator.check_float_legal_value('end_learning_rate', end_learning_rate, prim_name)
validator.check_number_range("end_learning_rate", end_learning_rate, 0.0, float("inf"), Rel.INC_LEFT,
prim_name)
validator.check_float_positive('power', power, prim_name)
validator.check_float_legal_value('power', power, prim_name)
validator.check_integer('decay_steps', decay_steps, 0, Rel.GT, prim_name)
@ -180,8 +182,7 @@ class Lamb(Optimizer):
eps=1e-6,
weight_decay=0.0,
decay_filter=lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()):
super(Lamb, self).__init__(start_learning_rate, params)
super(Lamb, self).__init__(0.0, params)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param_value(decay_steps, warmup_steps, start_learning_rate, end_learning_rate,

@ -104,7 +104,7 @@ def test_AdamWeightDecayDynamicLR():
_executor.compile(train_network, inputs, label)
def test_adam_mindspore_flatten():
def test_adam_mindspore_with_empty_params():
net = nn.Flatten()
with pytest.raises(ValueError, match=r"Optimizer got an empty parameter list"):
AdamWeightDecay(net.get_parameters())

Loading…
Cancel
Save