|
|
|
@ -217,6 +217,94 @@ class Model:
|
|
|
|
|
scaling_sens /= self._device_number
|
|
|
|
|
return scaling_sens
|
|
|
|
|
|
|
|
|
|
def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode):
|
|
|
|
|
"""Initializes dataset."""
|
|
|
|
|
need_wrap = False
|
|
|
|
|
if dataset_sink_mode:
|
|
|
|
|
# remove later to deal with loop sink
|
|
|
|
|
if not hasattr(dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \
|
|
|
|
|
and not context.get_context("enable_ge"):
|
|
|
|
|
need_wrap = True
|
|
|
|
|
|
|
|
|
|
if not is_train:
|
|
|
|
|
dataset.__loop_size__ = 1
|
|
|
|
|
|
|
|
|
|
dataset_helper = DatasetHelper(dataset, dataset_sink_mode)
|
|
|
|
|
|
|
|
|
|
# remove later to deal with loop sink
|
|
|
|
|
if need_wrap:
|
|
|
|
|
network = nn.DataWrapper(network, *(dataset_helper.types_shapes()), dataset.__ME_INITED__)
|
|
|
|
|
network.set_train(is_train)
|
|
|
|
|
network.phase = phase
|
|
|
|
|
|
|
|
|
|
return dataset_helper, network
|
|
|
|
|
|
|
|
|
|
def init(self, train_dataset=None, valid_dataset=None):
|
|
|
|
|
"""
|
|
|
|
|
Initializes compute graphs and data graphs with sink mode.
|
|
|
|
|
|
|
|
|
|
Note:
|
|
|
|
|
Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
train_dataset (Dataset): A training dataset iterator. If define `train_dataset`, training graphs will be
|
|
|
|
|
initialized. Default: None.
|
|
|
|
|
valid_dataset (Dataset): A evaluating dataset iterator. If define `valid_dataset`, evaluation graphs will
|
|
|
|
|
be initialized, and `metrics` in `Model` can not be None. Default: None.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> train_dataset = get_train_dataset()
|
|
|
|
|
>>> valid_dataset = get_valid_dataset()
|
|
|
|
|
>>> net = Net()
|
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'})
|
|
|
|
|
>>> model.init(train_dataset, valid_dataset)
|
|
|
|
|
>>> model.train(2, train_dataset)
|
|
|
|
|
>>> model.eval(valid_dataset)
|
|
|
|
|
"""
|
|
|
|
|
if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend":
|
|
|
|
|
raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.')
|
|
|
|
|
|
|
|
|
|
if not train_dataset and not valid_dataset:
|
|
|
|
|
raise ValueError('Both train_dataset and valid_dataset can not be None or empty.')
|
|
|
|
|
|
|
|
|
|
_device_number_check(self._parallel_mode, self._device_number)
|
|
|
|
|
|
|
|
|
|
if train_dataset:
|
|
|
|
|
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
|
|
|
|
|
self._train_network.set_train()
|
|
|
|
|
self._train_network.phase = 'train'
|
|
|
|
|
|
|
|
|
|
if self._parameter_broadcast:
|
|
|
|
|
self._train_network.set_broadcast_flag()
|
|
|
|
|
|
|
|
|
|
train_dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
|
|
|
|
is_train=True,
|
|
|
|
|
phase='train',
|
|
|
|
|
dataset=train_dataset,
|
|
|
|
|
dataset_sink_mode=True)
|
|
|
|
|
self._train_network = train_network
|
|
|
|
|
for inputs in train_dataset_helper:
|
|
|
|
|
self._train_network.compile(*inputs)
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
if valid_dataset:
|
|
|
|
|
if not self._metric_fns:
|
|
|
|
|
raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.')
|
|
|
|
|
|
|
|
|
|
self._eval_network.set_train(False)
|
|
|
|
|
self._eval_network.phase = 'eval'
|
|
|
|
|
valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
|
|
|
|
is_train=False,
|
|
|
|
|
phase='eval',
|
|
|
|
|
dataset=valid_dataset,
|
|
|
|
|
dataset_sink_mode=True)
|
|
|
|
|
self._eval_network = eval_network
|
|
|
|
|
for inputs in valid_dataset_helper:
|
|
|
|
|
self._eval_network.compile(*inputs)
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
|
|
|
|
"""
|
|
|
|
|
Training.
|
|
|
|
@ -277,21 +365,15 @@ class Model:
|
|
|
|
|
list_callback (_ListCallback): Executor of callback list. Default: None.
|
|
|
|
|
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
|
|
|
|
"""
|
|
|
|
|
# remove later to deal with loop sink
|
|
|
|
|
need_wrap = False
|
|
|
|
|
if not hasattr(train_dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \
|
|
|
|
|
and not context.get_context("enable_ge"):
|
|
|
|
|
need_wrap = True
|
|
|
|
|
|
|
|
|
|
dataset_helper = DatasetHelper(train_dataset)
|
|
|
|
|
# remove later to deal with loop sink
|
|
|
|
|
if need_wrap:
|
|
|
|
|
self._train_network = nn.DataWrapper(self._train_network, *(dataset_helper.types_shapes()),
|
|
|
|
|
train_dataset.__ME_INITED__)
|
|
|
|
|
cb_params.train_network = self._train_network
|
|
|
|
|
self._train_network.set_train()
|
|
|
|
|
|
|
|
|
|
dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
|
|
|
|
is_train=True,
|
|
|
|
|
phase='train',
|
|
|
|
|
dataset=train_dataset,
|
|
|
|
|
dataset_sink_mode=True)
|
|
|
|
|
self._train_network = train_network
|
|
|
|
|
cb_params.train_network = self._train_network
|
|
|
|
|
cb_params.cur_step_num = 0
|
|
|
|
|
|
|
|
|
|
loop_size = dataset_helper.loop_size()
|
|
|
|
|
run_context = RunContext(cb_params)
|
|
|
|
|
list_callback.begin(run_context)
|
|
|
|
@ -331,7 +413,11 @@ class Model:
|
|
|
|
|
list_callback (_ListCallback): Executor of callback list. Default: None.
|
|
|
|
|
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
|
|
|
|
"""
|
|
|
|
|
dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=False)
|
|
|
|
|
dataset_helper, _ = self._exec_preprocess(self._train_network,
|
|
|
|
|
is_train=True,
|
|
|
|
|
phase='train',
|
|
|
|
|
dataset=train_dataset,
|
|
|
|
|
dataset_sink_mode=False)
|
|
|
|
|
cb_params.cur_step_num = 0
|
|
|
|
|
run_context = RunContext(cb_params)
|
|
|
|
|
list_callback.begin(run_context)
|
|
|
|
@ -437,26 +523,15 @@ class Model:
|
|
|
|
|
Returns:
|
|
|
|
|
Dict, returns the loss value & metrics values for the model in test mode.
|
|
|
|
|
"""
|
|
|
|
|
_device_number_check(self._parallel_mode, self._device_number)
|
|
|
|
|
|
|
|
|
|
run_context = RunContext(cb_params)
|
|
|
|
|
|
|
|
|
|
# remove later to deal with loop sink
|
|
|
|
|
need_wrap = False
|
|
|
|
|
if not hasattr(valid_dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \
|
|
|
|
|
and not context.get_context("enable_ge"):
|
|
|
|
|
need_wrap = True
|
|
|
|
|
|
|
|
|
|
valid_dataset.__loop_size__ = 1
|
|
|
|
|
dataset_helper = DatasetHelper(valid_dataset)
|
|
|
|
|
|
|
|
|
|
# remove later to deal with loop sink
|
|
|
|
|
if need_wrap:
|
|
|
|
|
self._eval_network = nn.DataWrapper(self._eval_network, *(dataset_helper.types_shapes()),
|
|
|
|
|
valid_dataset.__ME_INITED__)
|
|
|
|
|
self._eval_network.set_train(mode=False)
|
|
|
|
|
self._eval_network.phase = 'eval'
|
|
|
|
|
|
|
|
|
|
dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
|
|
|
|
is_train=False,
|
|
|
|
|
phase='eval',
|
|
|
|
|
dataset=valid_dataset,
|
|
|
|
|
dataset_sink_mode=True)
|
|
|
|
|
self._eval_network = eval_network
|
|
|
|
|
cb_params.eval_network = self._eval_network
|
|
|
|
|
list_callback.begin(run_context)
|
|
|
|
|
|
|
|
|
|
for inputs in dataset_helper:
|
|
|
|
@ -490,7 +565,11 @@ class Model:
|
|
|
|
|
run_context = RunContext(cb_params)
|
|
|
|
|
list_callback.begin(run_context)
|
|
|
|
|
|
|
|
|
|
dataset_helper = DatasetHelper(valid_dataset, dataset_sink_mode=False)
|
|
|
|
|
dataset_helper, _ = self._exec_preprocess(self._eval_network,
|
|
|
|
|
is_train=False,
|
|
|
|
|
phase='eval',
|
|
|
|
|
dataset=valid_dataset,
|
|
|
|
|
dataset_sink_mode=False)
|
|
|
|
|
for next_element in dataset_helper:
|
|
|
|
|
cb_params.cur_step_num += 1
|
|
|
|
|
list_callback.step_begin(run_context)
|
|
|
|
@ -532,6 +611,7 @@ class Model:
|
|
|
|
|
>>> model.eval(dataset)
|
|
|
|
|
"""
|
|
|
|
|
check_bool(dataset_sink_mode)
|
|
|
|
|
_device_number_check(self._parallel_mode, self._device_number)
|
|
|
|
|
if not self._metric_fns:
|
|
|
|
|
raise ValueError("metric fn can not be None or empty.")
|
|
|
|
|
|
|
|
|
|