|
|
|
|
@ -17,7 +17,6 @@ import pytest
|
|
|
|
|
import mindspore.context as context
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
from scipy.stats import kstest
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
|
|
|
|
|
|
|
|
|
@ -35,7 +34,7 @@ class Net(nn.Cell):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.platform_x86_cpu
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_net():
|
|
|
|
|
seed = 10
|
|
|
|
|
@ -45,10 +44,6 @@ def test_net():
|
|
|
|
|
output = net()
|
|
|
|
|
assert output.shape == (5, 6, 8)
|
|
|
|
|
outnumpyflatten_1 = output.asnumpy().flatten()
|
|
|
|
|
_, p_value = kstest(outnumpyflatten_1, "norm")
|
|
|
|
|
# p-value is greater than the significance level, cannot reject the hypothesis that the data come from
|
|
|
|
|
# the standard norm distribution.
|
|
|
|
|
assert p_value >= 0.05
|
|
|
|
|
|
|
|
|
|
seed = 0
|
|
|
|
|
seed2 = 10
|
|
|
|
|
@ -57,8 +52,6 @@ def test_net():
|
|
|
|
|
output = net()
|
|
|
|
|
assert output.shape == (5, 6, 8)
|
|
|
|
|
outnumpyflatten_2 = output.asnumpy().flatten()
|
|
|
|
|
_, p_value = kstest(outnumpyflatten_2, "norm")
|
|
|
|
|
assert p_value >= 0.05
|
|
|
|
|
# same seed should generate same random number
|
|
|
|
|
assert (outnumpyflatten_1 == outnumpyflatten_2).all()
|
|
|
|
|
|
|
|
|
|
@ -68,18 +61,3 @@ def test_net():
|
|
|
|
|
net = Net(shape, seed, seed2)
|
|
|
|
|
output = net()
|
|
|
|
|
assert output.shape == (130, 120, 141)
|
|
|
|
|
outnumpyflatten_1 = output.asnumpy().flatten()
|
|
|
|
|
_, p_value = kstest(outnumpyflatten_1, "norm")
|
|
|
|
|
assert p_value >= 0.05
|
|
|
|
|
|
|
|
|
|
seed = 0
|
|
|
|
|
seed2 = 0
|
|
|
|
|
shape = (130, 120, 141)
|
|
|
|
|
net = Net(shape, seed, seed2)
|
|
|
|
|
output = net()
|
|
|
|
|
assert output.shape == (130, 120, 141)
|
|
|
|
|
outnumpyflatten_2 = output.asnumpy().flatten()
|
|
|
|
|
_, p_value = kstest(outnumpyflatten_2, "norm")
|
|
|
|
|
assert p_value >= 0.05
|
|
|
|
|
# different seed(seed = 0) should generate different random number
|
|
|
|
|
assert ~(outnumpyflatten_1 == outnumpyflatten_2).all()
|
|
|
|
|
|