!10412 Delete the redundant inputs of GNMTv2 model
From: @gaojing22 Reviewed-by: @c_34,@oacjiewen Signed-off-by: @c_34pull/10412/MERGE
commit
216aa8535b
@ -0,0 +1,102 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""export checkpoint file into air models"""
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor, context, Parameter
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
from config import GNMTConfig
|
||||
from src.gnmt_model.gnmt import GNMT
|
||||
from src.gnmt_model.gnmt_for_infer import GNMTInferCell
|
||||
from src.utils import zero_weight
|
||||
from src.utils.load_weights import load_infer_weights
|
||||
|
||||
parser = argparse.ArgumentParser(description="gnmt_v2 export")
|
||||
parser.add_argument("--file_name", type=str, default="gnmt_v2", help="output file name.")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
||||
parser.add_argument('--infer_config', type=str, required=True, help='gnmt_v2 config file')
|
||||
parser.add_argument("--existed_ckpt", type=str, required=True, help="existed checkpoint address.")
|
||||
parser.add_argument('--vocab_file', type=str, required=True, help='vocabulary file')
|
||||
parser.add_argument("--bpe_codes", type=str, required=True, help="bpe codes to use.")
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(
|
||||
mode=context.GRAPH_MODE,
|
||||
save_graphs=False,
|
||||
device_target="Ascend",
|
||||
reserve_class_name_in_scope=False)
|
||||
|
||||
|
||||
def get_config(config_file):
|
||||
tfm_config = GNMTConfig.from_json_file(config_file)
|
||||
tfm_config.compute_type = mstype.float16
|
||||
tfm_config.dtype = mstype.float32
|
||||
return tfm_config
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
config = get_config(args.infer_config)
|
||||
config.existed_ckpt = args.existed_ckpt
|
||||
vocab = args.vocab_file
|
||||
bpe_codes = args.bpe_codes
|
||||
|
||||
tfm_model = GNMT(config=config,
|
||||
is_training=False,
|
||||
use_one_hot_embeddings=False)
|
||||
|
||||
params = tfm_model.trainable_params()
|
||||
weights = load_infer_weights(config)
|
||||
|
||||
for param in params:
|
||||
value = param.data
|
||||
name = param.name
|
||||
if name not in weights:
|
||||
raise ValueError(f"{name} is not found in weights.")
|
||||
with open("weight_after_deal.txt", "a+") as f:
|
||||
weights_name = name
|
||||
f.write(weights_name)
|
||||
f.write("\n")
|
||||
if isinstance(value, Tensor):
|
||||
print(name, value.asnumpy().shape)
|
||||
if weights_name in weights:
|
||||
assert weights_name in weights
|
||||
if isinstance(weights[weights_name], Parameter):
|
||||
if param.data.dtype == "Float32":
|
||||
param.set_data(Tensor(weights[weights_name].data.asnumpy(), mstype.float32))
|
||||
elif param.data.dtype == "Float16":
|
||||
param.set_data(Tensor(weights[weights_name].data.asnumpy(), mstype.float16))
|
||||
|
||||
elif isinstance(weights[weights_name], Tensor):
|
||||
param.set_data(Tensor(weights[weights_name].asnumpy(), config.dtype))
|
||||
elif isinstance(weights[weights_name], np.ndarray):
|
||||
param.set_data(Tensor(weights[weights_name], config.dtype))
|
||||
else:
|
||||
param.set_data(weights[weights_name])
|
||||
else:
|
||||
print("weight not found in checkpoint: " + weights_name)
|
||||
param.set_data(zero_weight(value.asnumpy().shape))
|
||||
f.close()
|
||||
print(" | Load weights successfully.")
|
||||
tfm_infer = GNMTInferCell(tfm_model)
|
||||
tfm_infer.set_train(False)
|
||||
|
||||
source_ids = Tensor(np.ones((config.batch_size, config.seq_length)).astype(np.int32))
|
||||
source_mask = Tensor(np.ones((config.batch_size, config.seq_length)).astype(np.int32))
|
||||
|
||||
export(tfm_infer, source_ids, source_mask, file_name=args.file_name, file_format=args.file_format)
|
@ -1,6 +1,4 @@
|
||||
nltk
|
||||
jieba
|
||||
numpy
|
||||
subword-nmt==0.3.7
|
||||
sacrebleu==1.2.10
|
||||
sacremoses==0.0.19
|
||||
sacrebleu==1.4.14
|
||||
sacremoses==0.0.35
|
||||
|
Loading…
Reference in new issue