commit
21c381b366
@ -1 +1 @@
|
||||
Subproject commit dda72a48c7e0033389bd377c5804d485fdf3112d
|
||||
Subproject commit 8891f0546c4a250095ff68e1262f58772b938fd9
|
@ -0,0 +1,172 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Cast op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
cast_op_info = AiCPURegOp("Cast") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "x", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(cast_op_info)
|
||||
def _cast_aicpu():
|
||||
"""Cast AiCPU register"""
|
||||
return
|
@ -0,0 +1,102 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""EmbeddingLookup op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
embeddingLookup_op_info = AiCPURegOp("EmbeddingLookup") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "params", "required") \
|
||||
.input(1, "indices", "required") \
|
||||
.input(2, "offset", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(embeddingLookup_op_info)
|
||||
def _embedding_lookup_aicpu():
|
||||
"""EmbeddingLookup AiCPU register"""
|
||||
return
|
@ -0,0 +1,48 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""RandomCategorical op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
random_categorical_op_info = AiCPURegOp("RandomCategorical") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "logits", "required") \
|
||||
.input(1, "num_sample", "required") \
|
||||
.input(2, "seed", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(random_categorical_op_info)
|
||||
def _random_categorical_aicpu():
|
||||
"""RandomCategorical AiCPU register"""
|
||||
return
|
@ -0,0 +1,37 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""RNNTLoss op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
rnnt_loss_op_info = AiCPURegOp("RNNTLoss") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "acts", "required") \
|
||||
.input(1, "labels", "required") \
|
||||
.input(2, "input_lengths", "required") \
|
||||
.input(3, "label_lengths", "required") \
|
||||
.output(0, "costs", "required") \
|
||||
.output(1, "grads", "required") \
|
||||
.attr("blank_label", "int") \
|
||||
.dtype_format(DataType.F32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW, DataType.F32_NCHW,
|
||||
DataType.F32_NCHW) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(rnnt_loss_op_info)
|
||||
def _rnnt_loss_aicpu():
|
||||
"""RNNTLoss AiCPU register"""
|
||||
return
|
@ -0,0 +1,75 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, x, dtype):
|
||||
super(Net, self).__init__()
|
||||
self.cast = P.Cast()
|
||||
self.x = x
|
||||
self.dtype = dtype
|
||||
|
||||
def construct(self):
|
||||
return self.cast(self.x, self.dtype)
|
||||
|
||||
def test_net_f32_bool():
|
||||
x = np.random.randn(3,4).astype(np.float32)
|
||||
x[:,1] = 0
|
||||
net = Net(Tensor(x), mstype.bool_)
|
||||
output = net()
|
||||
print(output.asnumpy())
|
||||
print(Tensor(x).dtype)
|
||||
print(output.dtype)
|
||||
|
||||
def test_net_f16_bool():
|
||||
x = np.random.randn(3,4).astype(np.float16)
|
||||
x[:,1] = 0
|
||||
net = Net(Tensor(x), mstype.bool_)
|
||||
output = net()
|
||||
print(output.asnumpy())
|
||||
print(Tensor(x).dtype)
|
||||
print(output.dtype)
|
||||
|
||||
def test_net_f64_bool():
|
||||
x = np.random.randn(3,4).astype(np.float64)
|
||||
x[:,1] = 0
|
||||
net = Net(Tensor(x), mstype.bool_)
|
||||
output = net()
|
||||
print(output.asnumpy())
|
||||
print(Tensor(x).dtype)
|
||||
print(output.dtype)
|
||||
|
||||
def test_net_int16_float16():
|
||||
x = np.random.randint(-512, 512, size=(3,4)).astype(np.int16)
|
||||
net = Net(Tensor(x), mstype.float16)
|
||||
output = net()
|
||||
print(output.asnumpy())
|
||||
print(Tensor(x).dtype)
|
||||
print(output.dtype)
|
||||
|
||||
def test_net_int64_float16():
|
||||
x = np.random.randint(-512, 512, size=(3,4)).astype(np.int64)
|
||||
net = Net(Tensor(x), mstype.float16)
|
||||
output = net()
|
||||
print(output.asnumpy())
|
||||
print(Tensor(x).dtype)
|
||||
print(output.dtype)
|
@ -0,0 +1,38 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import mindspore
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, num_sample):
|
||||
super(Net, self).__init__()
|
||||
self.random_categorical = P.RandomCategorical(mindspore.int64)
|
||||
self.num_sample = num_sample
|
||||
|
||||
def construct(self, logits, seed=0):
|
||||
return self.random_categorical(logits, self.num_sample, seed)
|
||||
|
||||
def test_net():
|
||||
x = np.random.random((10, 5)).astype(np.float32)
|
||||
net = Net(8)
|
||||
output = net(Tensor(x))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
print(output.dtype())
|
@ -0,0 +1,43 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import mindspore as ms
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.rnnt_loss = P.RNNTLoss(blank_label=0)
|
||||
|
||||
def construct(self, acts, labels, act_lens, label_lens):
|
||||
return self.rnnt_loss(acts, labels, act_lens, label_lens)
|
||||
|
||||
|
||||
def test_net():
|
||||
B, T, U, V = 1, 2, 3, 5
|
||||
acts = np.random.random((B, T, U, V)).astype(np.float32)
|
||||
labels = np.array([[np.random.randint(1, V-1) for _ in range(U-1)]]).astype(np.int32)
|
||||
input_length = np.array([T] * B).astype(np.int32)
|
||||
label_length = np.array([len(l) for l in labels]).astype(np.int32)
|
||||
|
||||
rnnt_loss = Net()
|
||||
costs, grads = rnnt_loss(Tensor(acts), Tensor(labels), Tensor(input_length), Tensor(label_length))
|
||||
print(Tensor(acts), Tensor(labels), Tensor(input_length), Tensor(label_length))
|
||||
print(costs.asnumpy())
|
||||
print(grads.asnumpy())
|
@ -0,0 +1,42 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, offset):
|
||||
super(Net, self).__init__()
|
||||
self.embedding = P.EmbeddingLookup()
|
||||
self.offset = offset
|
||||
|
||||
def construct(self, param, index):
|
||||
return self.embedding(param, index, self.offset)
|
||||
|
||||
|
||||
def test_embedding_lookup_sparse():
|
||||
params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mstype.int32)
|
||||
indices = Tensor(np.array([[5, 2], [8, 5]]), mstype.int32)
|
||||
offset = 4
|
||||
embedding = Net(offset)
|
||||
out = embedding(params, indices)
|
||||
assert(out.asnumpy() == [[[10, 11], [0, 0]], [[0, 0], [10, 11]]]).all()
|
Loading…
Reference in new issue