!9600 Add Adagrad Optimizer
From: @zyx5256 Reviewed-by: @liangchenghui,@kingxian Signed-off-by: @liangchenghuipull/9600/MERGE
commit
231fccf66c
@ -0,0 +1,134 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""ADA_GRAD"""
|
||||
from mindspore.ops import functional as F, composite as C, operations as P
|
||||
from mindspore._checkparam import Validator as validator
|
||||
from .optimizer import Optimizer
|
||||
|
||||
_ada_grad_opt = C.MultitypeFuncGraph("ada_grad_opt")
|
||||
|
||||
|
||||
@_ada_grad_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor")
|
||||
def _tensor_run_opt(opt, learning_rate, weight, accum, gradient):
|
||||
"""Apply ada_grad optimizer to the weight parameter."""
|
||||
success = True
|
||||
success = F.depend(success, opt(weight, accum, learning_rate, gradient))
|
||||
return success
|
||||
|
||||
|
||||
def _check_param_value(accum, update_slots, prim_name=None):
|
||||
"""Check inputs param."""
|
||||
validator.check_value_type("accum", accum, [float], prim_name)
|
||||
validator.check_value_type("update_slots", update_slots, [bool], prim_name)
|
||||
validator.check_non_negative_float(accum, "accum", prim_name)
|
||||
|
||||
|
||||
class Adagrad(Optimizer):
|
||||
"""
|
||||
Implement the Adagrad algorithm with ApplyAdagrad Operator.
|
||||
|
||||
Adagrad is an online Learning and Stochastic Optimization.
|
||||
Refer to paper `Efficient Learning using Forward-Backward Splitting
|
||||
<https://proceedings.neurips.cc/paper/2009/file/621bf66ddb7c962aa0d22ac97d69b793-Paper.pdf>`_.
|
||||
|
||||
Note:
|
||||
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
|
||||
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
|
||||
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
|
||||
|
||||
To improve parameter groups performance, the customized order of parameters can be supported.
|
||||
|
||||
Args:
|
||||
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
|
||||
the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params",
|
||||
"lr", "weight_decay" and "order_params" are the keys can be parsed.
|
||||
|
||||
- params: Required. The value must be a list of `Parameter`.
|
||||
|
||||
- lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
|
||||
If not, the `learning_rate` in the API will be used.
|
||||
|
||||
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
|
||||
will be used. If not, the `weight_decay` in the API will be used.
|
||||
|
||||
- order_params: Optional. If "order_params" in the keys, the value must be the order of parameters and
|
||||
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
|
||||
in the value of 'order_params' must be in one of group parameters.
|
||||
|
||||
accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1.
|
||||
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate.
|
||||
When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then
|
||||
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
|
||||
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
|
||||
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
|
||||
dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be
|
||||
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
|
||||
Default: 0.001.
|
||||
update_slots (bool): If true, update accumulation. Default: True.
|
||||
loss_scale (float): Value for the loss scale. It must be greater than 0.0. Default: 1.0.
|
||||
weight_decay (float): Weight decay value to multiply weight, must be zero or positive value. Default: 0.0.
|
||||
|
||||
Inputs:
|
||||
- **grads** (tuple[Tensor]) - The gradients of `params` in the optimizer, the shape is the same as the `params`
|
||||
in optimizer.
|
||||
|
||||
Outputs:
|
||||
Tensor[bool], the value is True.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> net = Net()
|
||||
>>> #1) All parameters use the same learning rate and weight decay
|
||||
>>> optim = nn.Adagrad(params=net.trainable_params())
|
||||
>>>
|
||||
>>> #2) Use parameter groups and set different values
|
||||
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
... {'params': no_conv_params, 'lr': 0.01},
|
||||
... {'order_params': net.trainable_params()}]
|
||||
>>> optim = nn.Adagrad(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
|
||||
>>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
|
||||
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
||||
>>>
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim)
|
||||
"""
|
||||
|
||||
def __init__(self, params, accum=0.1, learning_rate=0.001,
|
||||
update_slots=True, loss_scale=1.0, weight_decay=0.0):
|
||||
super(Adagrad, self).__init__(learning_rate, params, weight_decay, loss_scale)
|
||||
_check_param_value(accum, update_slots, self.cls_name)
|
||||
self.accum = self.parameters.clone(prefix="accum", init=accum)
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.update_slots = update_slots
|
||||
self.opt = P.ApplyAdagrad(update_slots=update_slots)
|
||||
|
||||
def construct(self, grads):
|
||||
params = self.parameters
|
||||
accum = self.accum
|
||||
grads = self.decay_weight(grads)
|
||||
grads = self.scale_grad(grads)
|
||||
lr = self.get_lr()
|
||||
if self.is_group_lr:
|
||||
success = self.map_(F.partial(_ada_grad_opt, self.opt), lr, params, accum,
|
||||
grads)
|
||||
else:
|
||||
success = self.map_(F.partial(_ada_grad_opt, self.opt, lr), params, accum,
|
||||
grads)
|
||||
return success
|
@ -0,0 +1,52 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test ADA_GRAD """
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Parameter, context
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn.optim import Adagrad
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(enable_sparse=True)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name='weight')
|
||||
self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name='bias')
|
||||
self.matmul = P.MatMul()
|
||||
self.biasAdd = P.BiasAdd()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
|
||||
return x
|
||||
|
||||
|
||||
def test_ada_grad():
|
||||
""" test_ada_grad """
|
||||
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
||||
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
||||
net = Net()
|
||||
net.set_train()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
optimizer = Adagrad(net.trainable_params(), weight_decay=0.9, loss_scale=1024.0)
|
||||
net_with_loss = WithLossCell(net, loss)
|
||||
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
||||
_executor.compile(train_network, inputs, label)
|
Loading…
Reference in new issue