|
|
|
@ -0,0 +1,166 @@
|
|
|
|
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ============================================================================
|
|
|
|
|
import time
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pytest
|
|
|
|
|
from mindspore import context, nn, Tensor
|
|
|
|
|
from mindspore import log as logger
|
|
|
|
|
from mindspore.common.api import _executor
|
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
import mindspore.dataset as de
|
|
|
|
|
from mindspore.dataset.vision import c_transforms as c_vision
|
|
|
|
|
from mindspore.dataset.transforms import c_transforms as c_trans
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DATA_DIR = "/home/workspace/mindspore_dataset/cifar-10-verify-bin"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dataset_cifar(dataset_path=None, batch_size=32, repeat_num=1, num_rows=9600, distribution_num=None, shard_id=None,
|
|
|
|
|
drop_remainder=True, usage=None, shuffle=False, num_workers=8, resize_size=32, pad_info=None):
|
|
|
|
|
if dataset_path is None:
|
|
|
|
|
dataset_path = DATA_DIR
|
|
|
|
|
|
|
|
|
|
ds = de.Cifar10Dataset(dataset_path, num_samples=num_rows, num_shards=distribution_num, shard_id=shard_id,
|
|
|
|
|
shuffle=shuffle, usage=usage, num_parallel_workers=num_workers)
|
|
|
|
|
|
|
|
|
|
typecast_op = c_trans.TypeCast(mstype.int32)
|
|
|
|
|
ds = ds.map(input_columns="label", operations=typecast_op, num_parallel_workers=num_workers)
|
|
|
|
|
|
|
|
|
|
image_op_list = [c_vision.Resize(resize_size),
|
|
|
|
|
c_vision.Rescale(1.0 / 255.0, 0.0),
|
|
|
|
|
c_vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
|
|
|
|
c_vision.HWC2CHW()]
|
|
|
|
|
ds = ds.map(input_columns="image", operations=image_op_list, num_parallel_workers=num_workers)
|
|
|
|
|
|
|
|
|
|
ds = ds.batch(batch_size, drop_remainder=drop_remainder, num_parallel_workers=num_workers, pad_info=pad_info)
|
|
|
|
|
ds = ds.repeat(repeat_num)
|
|
|
|
|
|
|
|
|
|
return ds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def op_network_with_epoch(network, step_num):
|
|
|
|
|
iter_num = 0
|
|
|
|
|
network.set_train()
|
|
|
|
|
for _ in range(step_num):
|
|
|
|
|
op_return = network()
|
|
|
|
|
op_return = op_return.asnumpy()
|
|
|
|
|
logger.info("Op_return is : %s", op_return)
|
|
|
|
|
iter_num += 1
|
|
|
|
|
logger.info("Iter Num : %s", iter_num)
|
|
|
|
|
|
|
|
|
|
return iter_num
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_type(shapes, types):
|
|
|
|
|
ms_types = []
|
|
|
|
|
for np_shape, np_type in zip(shapes, types):
|
|
|
|
|
input_np = np.zeros(np_shape, np_type)
|
|
|
|
|
tensor = Tensor(input_np)
|
|
|
|
|
ms_types.append(tensor.dtype)
|
|
|
|
|
return ms_types
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_dataset_base_value(dataset):
|
|
|
|
|
dataset_size = dataset.get_dataset_size()
|
|
|
|
|
batch_size = dataset.get_batch_size()
|
|
|
|
|
return dataset_size, batch_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dataset_send_tdt(dataset):
|
|
|
|
|
time.sleep(1)
|
|
|
|
|
dataset.send(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_dataset_shapes_and_types(dataset):
|
|
|
|
|
dataset_shapes = dataset.output_shapes()
|
|
|
|
|
np_types = dataset.output_types()
|
|
|
|
|
dataset_types = convert_type(dataset_shapes, np_types)
|
|
|
|
|
return dataset_shapes, dataset_types
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SingleOpNetwork(nn.Cell):
|
|
|
|
|
def __init__(self, shapes):
|
|
|
|
|
super(SingleOpNetwork, self).__init__()
|
|
|
|
|
self.shapes = tuple(shapes[0])
|
|
|
|
|
self.Op_Reshape_network = P.Reshape()
|
|
|
|
|
|
|
|
|
|
def construct(self, network_input):
|
|
|
|
|
return self.Op_Reshape_network(network_input, self.shapes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NetWithTDT(nn.Cell):
|
|
|
|
|
def __init__(self, network, dataset_types, dataset_shapes, shared_name=''):
|
|
|
|
|
super(NetWithTDT, self).__init__()
|
|
|
|
|
self.get_next = P.GetNext(dataset_types, dataset_shapes, len(dataset_shapes), shared_name)
|
|
|
|
|
self.Op_network = network
|
|
|
|
|
|
|
|
|
|
def construct(self):
|
|
|
|
|
next_input, _ = self.get_next()
|
|
|
|
|
return self.Op_network(next_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def op_network_with_step_num(dataset, step_num):
|
|
|
|
|
dataset_shapes, dataset_types = get_dataset_shapes_and_types(dataset)
|
|
|
|
|
_, batch_size = get_dataset_base_value(dataset)
|
|
|
|
|
dataset = dataset.device_que()
|
|
|
|
|
queue_name = dataset.queue_name
|
|
|
|
|
|
|
|
|
|
net = SingleOpNetwork(dataset_shapes)
|
|
|
|
|
net_with_dataset = NetWithTDT(net, dataset_types, dataset_shapes, queue_name)
|
|
|
|
|
# when device type is Davinci, net should has get_next operation before call init_dataset
|
|
|
|
|
_executor.init_dataset(dataset.queue_name, 1, batch_size, dataset_types, dataset_shapes, (), "")
|
|
|
|
|
dataset_send_tdt(dataset)
|
|
|
|
|
return op_network_with_epoch(net_with_dataset, step_num)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_tdt_consume_beyond_produce():
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
|
|
|
|
batch_size = 64
|
|
|
|
|
repeat_num = 1
|
|
|
|
|
num_rows = 640
|
|
|
|
|
beyond_step_num = 1000
|
|
|
|
|
ds = dataset_cifar(batch_size=batch_size, repeat_num=repeat_num, num_rows=num_rows)
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
iter_num = op_network_with_step_num(ds, step_num=beyond_step_num)
|
|
|
|
|
logger.info("out_iter_num:%s", iter_num)
|
|
|
|
|
assert False
|
|
|
|
|
except RuntimeError as e:
|
|
|
|
|
logger.info("when dataset batch num is less than train loop, error msg is %s", e)
|
|
|
|
|
assert True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_tdt_produce_beyond_consume():
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
|
|
|
|
batch_size = 64
|
|
|
|
|
repeat_num = 1
|
|
|
|
|
num_rows = 6400
|
|
|
|
|
beyond_step_num = 10
|
|
|
|
|
ds = dataset_cifar(batch_size=batch_size, repeat_num=repeat_num, num_rows=num_rows)
|
|
|
|
|
|
|
|
|
|
iter_num = op_network_with_step_num(ds, step_num=beyond_step_num)
|
|
|
|
|
logger.info("out_iter_num:%s", iter_num)
|
|
|
|
|
assert iter_num == 10
|