!8586 fix GatherD and add Randperm for aicpu
From: @yanzhenxiang2020 Reviewed-by: @liangchenghui,@wuxuejian Signed-off-by: @wuxuejianpull/8586/MERGE
commit
2370828043
@ -0,0 +1,54 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""GatherDGrad op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
gather_grad_op_info = AiCPURegOp("GatherDGrad") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("dim", "int") \
|
||||
.input(0, "index", "required") \
|
||||
.input(1, "src", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.dtype_format(DataType.I32_Default, DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(gather_grad_op_info)
|
||||
def _gather_grad_aicpu():
|
||||
"""GatherDGrad AiCPU register"""
|
||||
return
|
@ -0,0 +1,36 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Randperm op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
randperm_op_info = AiCPURegOp("Randperm") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.output(0, "y", "required") \
|
||||
.attr("n", "int") \
|
||||
.dtype_format(DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(randperm_op_info)
|
||||
def _randperm_aicpu():
|
||||
"""Randperm AiCPU register"""
|
||||
return
|
@ -0,0 +1,79 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Scatter op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
scatter_op_info = AiCPURegOp("Scatter") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "target", "required") \
|
||||
.input(1, "dim", "required") \
|
||||
.input(2, "index", "required") \
|
||||
.input(3, "src", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(scatter_op_info)
|
||||
def _scatter_aicpu():
|
||||
"""Scatter AiCPU register"""
|
||||
return
|
@ -0,0 +1,99 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, dim=0):
|
||||
super(Net, self).__init__()
|
||||
self.op = P.GatherD()
|
||||
self.dim = dim
|
||||
|
||||
def construct(self, x, index):
|
||||
return self.op(x, self.dim, index)
|
||||
|
||||
|
||||
class NetGrad(nn.Cell):
|
||||
def __init__(self, dim=0, shape=None):
|
||||
super(NetGrad, self).__init__()
|
||||
self.op = G.GatherDGrad(dim, shape)
|
||||
|
||||
def construct(self, index, x):
|
||||
return self.op(index, x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = Tensor(np.array([[772, 231, 508, 545, 615, 249],
|
||||
[923, 210, 480, 696, 482, 761],
|
||||
[465, 904, 521, 824, 607, 669],
|
||||
[156, 539, 56, 159, 916, 566],
|
||||
[122, 676, 714, 261, 19, 936]]), mindspore.int32)
|
||||
index = Tensor(np.array([[0, 0, 0, 1, 1],
|
||||
[0, 0, 0, 1, 4],
|
||||
[0, 0, 0, 1, -1],
|
||||
[1, 1, 1, 0, 0]]), mindspore.int32)
|
||||
dim = 0
|
||||
net = Net(dim)
|
||||
out = net(x, index)
|
||||
print(out.asnumpy())
|
||||
|
||||
expect_out = np.array([[772, 231, 508, 696, 482],
|
||||
[772, 231, 508, 696, 19],
|
||||
[772, 231, 508, 696, 19],
|
||||
[923, 210, 480, 545, 615]])
|
||||
assert np.array_equal(out.asnumpy(), expect_out)
|
||||
|
||||
|
||||
def test_net_bool():
|
||||
x = Tensor(np.array([[0, 1, 0, 0, 1, 0],
|
||||
[0, 1, 0, 0, 1, 0],
|
||||
[0, 0, 1, 1, 0, 1],
|
||||
[1, 0, 1, 1, 0, 0],
|
||||
[1, 1, 1, 1, 0, 0]]), mindspore.bool_)
|
||||
index = Tensor(np.array([[0, 0, 0, 1, 1],
|
||||
[0, 0, 0, 1, 4],
|
||||
[0, 0, 0, 1, -1],
|
||||
[1, 1, 1, 0, 0]]), mindspore.int32)
|
||||
dim = 0
|
||||
net = Net(dim)
|
||||
out = net(x, index)
|
||||
print(out.asnumpy())
|
||||
|
||||
expect_out = np.array([[0, 1, 0, 0, 1],
|
||||
[0, 1, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0],
|
||||
[0, 1, 0, 0, 1]]).astype(np.bool)
|
||||
assert np.array_equal(out.asnumpy(), expect_out)
|
||||
|
||||
|
||||
def test_net_grad():
|
||||
index = Tensor(np.array([[0, 1, 2, 0, 0],
|
||||
[2, 0, 0, 1, -1]]), mindspore.int32)
|
||||
x = Tensor(np.array([[772, 231, 508, 615, 249],
|
||||
[122, 676, 714, 261, 936]]), mindspore.int32)
|
||||
net = NetGrad(dim=0, shape=(3, 5))
|
||||
out = net(index, x)
|
||||
print(out.asnumpy())
|
||||
|
||||
expect_out = np.array([[772, 676, 714, 615, 249],
|
||||
[0, 231, 0, 261, 0],
|
||||
[122, 0, 508, 0, 936]])
|
||||
assert np.array_equal(out.asnumpy(), expect_out)
|
@ -0,0 +1,56 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import mindspore
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, n=1, dtype=mindspore.int32):
|
||||
super(Net, self).__init__()
|
||||
self.randperm = P.Randperm(n, dtype)
|
||||
|
||||
def construct(self):
|
||||
return self.randperm()
|
||||
|
||||
|
||||
def test_net():
|
||||
net = Net()
|
||||
output = net()
|
||||
|
||||
print(output)
|
||||
print(output.shape)
|
||||
print(output.dtype)
|
||||
assert output.shape == (1,)
|
||||
assert output.dtype == mindspore.int32
|
||||
assert output.asnumpy()[0] == 0
|
||||
|
||||
|
||||
def test_net_n20():
|
||||
net = Net(20, mindspore.uint64)
|
||||
output = net()
|
||||
|
||||
print(output)
|
||||
assert output.shape == (20,)
|
||||
assert output.dtype == mindspore.uint64
|
||||
|
||||
sample_set = set()
|
||||
for i in output.asnumpy():
|
||||
assert i not in sample_set
|
||||
assert 0 <= i < 20
|
||||
sample_set.add(i)
|
Loading…
Reference in new issue