parent
3eff68f8aa
commit
23ff21edd8
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,216 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.probability.distribution.LogNormal.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
def test_lognormal_shape_errpr():
|
||||
"""
|
||||
Invalid shapes.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
msd.LogNormal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||
|
||||
def test_type():
|
||||
with pytest.raises(TypeError):
|
||||
msd.LogNormal(0., 1., dtype=dtype.int32)
|
||||
|
||||
def test_name():
|
||||
with pytest.raises(TypeError):
|
||||
msd.LogNormal(0., 1., name=1.0)
|
||||
|
||||
def test_seed():
|
||||
with pytest.raises(TypeError):
|
||||
msd.LogNormal(0., 1., seed='seed')
|
||||
|
||||
def test_sd():
|
||||
with pytest.raises(ValueError):
|
||||
msd.LogNormal(0., 0.)
|
||||
with pytest.raises(ValueError):
|
||||
msd.LogNormal(0., -1.)
|
||||
|
||||
def test_arguments():
|
||||
"""
|
||||
args passing during initialization.
|
||||
"""
|
||||
n = msd.LogNormal()
|
||||
assert isinstance(n, msd.Distribution)
|
||||
n = msd.LogNormal([3.0], [4.0], dtype=dtype.float32)
|
||||
assert isinstance(n, msd.Distribution)
|
||||
|
||||
|
||||
class LogNormalProb(nn.Cell):
|
||||
"""
|
||||
LogNormal distribution: initialize with mean/sd.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalProb, self).__init__()
|
||||
self.lognormal = msd.LogNormal(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.lognormal.prob(value)
|
||||
log_prob = self.lognormal.log_prob(value)
|
||||
cdf = self.lognormal.cdf(value)
|
||||
log_cdf = self.lognormal.log_cdf(value)
|
||||
sf = self.lognormal.survival_function(value)
|
||||
log_sf = self.lognormal.log_survival(value)
|
||||
return prob + log_prob + cdf + log_cdf + sf + log_sf
|
||||
|
||||
def test_lognormal_prob():
|
||||
"""
|
||||
Test probability functions: passing value through construct.
|
||||
"""
|
||||
net = LogNormalProb()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
ans = net(value)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
|
||||
class LogNormalProb1(nn.Cell):
|
||||
"""
|
||||
LogNormal distribution: initialize without mean/sd.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalProb1, self).__init__()
|
||||
self.lognormal = msd.LogNormal()
|
||||
|
||||
def construct(self, value, mean, sd):
|
||||
prob = self.lognormal.prob(value, mean, sd)
|
||||
log_prob = self.lognormal.log_prob(value, mean, sd)
|
||||
cdf = self.lognormal.cdf(value, mean, sd)
|
||||
log_cdf = self.lognormal.log_cdf(value, mean, sd)
|
||||
sf = self.lognormal.survival_function(value, mean, sd)
|
||||
log_sf = self.lognormal.log_survival(value, mean, sd)
|
||||
return prob + log_prob + cdf + log_cdf + sf + log_sf
|
||||
|
||||
def test_lognormal_prob1():
|
||||
"""
|
||||
Test probability functions: passing mean/sd, value through construct.
|
||||
"""
|
||||
net = LogNormalProb1()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
mean = Tensor([0.0], dtype=dtype.float32)
|
||||
sd = Tensor([1.0], dtype=dtype.float32)
|
||||
ans = net(value, mean, sd)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class LogNormalKl(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalKl, self).__init__()
|
||||
self.n1 = msd.LogNormal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n2 = msd.LogNormal(dtype=dtype.float32)
|
||||
|
||||
def construct(self, mean_b, sd_b, mean_a, sd_a):
|
||||
kl1 = self.n1.kl_loss('LogNormal', mean_b, sd_b)
|
||||
kl2 = self.n2.kl_loss('LogNormal', mean_b, sd_b, mean_a, sd_a)
|
||||
return kl1 + kl2
|
||||
|
||||
def test_kl():
|
||||
"""
|
||||
Test kl_loss.
|
||||
"""
|
||||
net = LogNormalKl()
|
||||
mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
||||
sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
||||
ans = net(mean_b, sd_b, mean_a, sd_a)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class LogNormalCrossEntropy(nn.Cell):
|
||||
"""
|
||||
Test class: cross_entropy of LogNormal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalCrossEntropy, self).__init__()
|
||||
self.n1 = msd.LogNormal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n2 = msd.LogNormal(dtype=dtype.float32)
|
||||
|
||||
def construct(self, mean_b, sd_b, mean_a, sd_a):
|
||||
h1 = self.n1.cross_entropy('LogNormal', mean_b, sd_b)
|
||||
h2 = self.n2.cross_entropy('LogNormal', mean_b, sd_b, mean_a, sd_a)
|
||||
return h1 + h2
|
||||
|
||||
def test_cross_entropy():
|
||||
"""
|
||||
Test cross entropy between LogNormal distributions.
|
||||
"""
|
||||
net = LogNormalCrossEntropy()
|
||||
mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
||||
sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
||||
ans = net(mean_b, sd_b, mean_a, sd_a)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class LogNormalBasics(nn.Cell):
|
||||
"""
|
||||
Test class: basic mean/sd function.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalBasics, self).__init__()
|
||||
self.n = msd.LogNormal(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.n.mean()
|
||||
sd = self.n.sd()
|
||||
mode = self.n.mode()
|
||||
entropy = self.n.entropy()
|
||||
return mean + sd + mode + entropy
|
||||
|
||||
def test_bascis():
|
||||
"""
|
||||
Test mean/sd/mode/entropy functionality of LogNormal.
|
||||
"""
|
||||
net = LogNormalBasics()
|
||||
ans = net()
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
|
||||
class LogNormalConstruct(nn.Cell):
|
||||
"""
|
||||
LogNormal distribution: going through construct.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogNormalConstruct, self).__init__()
|
||||
self.lognormal = msd.LogNormal(3.0, 4.0)
|
||||
self.lognormal1 = msd.LogNormal()
|
||||
|
||||
def construct(self, value, mean, sd):
|
||||
prob = self.lognormal('prob', value)
|
||||
prob1 = self.lognormal('prob', value, mean, sd)
|
||||
prob2 = self.lognormal1('prob', value, mean, sd)
|
||||
return prob + prob1 + prob2
|
||||
|
||||
def test_lognormal_construct():
|
||||
"""
|
||||
Test probability function going through construct.
|
||||
"""
|
||||
net = LogNormalConstruct()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
mean = Tensor([0.0], dtype=dtype.float32)
|
||||
sd = Tensor([1.0], dtype=dtype.float32)
|
||||
ans = net(value, mean, sd)
|
||||
assert isinstance(ans, Tensor)
|
Loading…
Reference in new issue