!3744 [Auto parallel] Add a new graph operation in the DP algorithm
Merge pull request !3744 from Xiaoda/14-add-new-graph-operations-in-auto-parallelpull/3744/MERGE
commit
25fdb67e3d
@ -0,0 +1,114 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, z, w, a):
|
||||
predict = self.network(x, y, z, w, a)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, z, w, a):
|
||||
return C.grad_all(self.network)(x, y, z, w, a)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
||||
def test_double_source_graph():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.matmul1 = P.MatMul()
|
||||
self.matmul2 = P.MatMul()
|
||||
self.matmul3 = P.MatMul()
|
||||
self.matmul4 = P.MatMul()
|
||||
self.matmul5 = P.MatMul()
|
||||
|
||||
def construct(self, x, y, z, w, a):
|
||||
m1_result = self.matmul1(x, y)
|
||||
m2_result = self.matmul2(z, w)
|
||||
m3_result = self.matmul3(m2_result, m1_result)
|
||||
m4_result = self.matmul4(m2_result, m1_result)
|
||||
out = self.matmul5(m3_result, m4_result)
|
||||
|
||||
return out
|
||||
|
||||
size = 8
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
z = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
w = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
a = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x, y, z, w, a)
|
||||
|
||||
|
||||
def test_double_source_complex_graph():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.matmul1 = P.MatMul()
|
||||
self.matmul2 = P.MatMul()
|
||||
self.matmul3 = P.MatMul()
|
||||
self.matmul4 = P.MatMul()
|
||||
self.matmul5 = P.MatMul()
|
||||
self.matmul6 = P.MatMul()
|
||||
|
||||
def construct(self, x, y, z, w, a):
|
||||
m1_result = self.matmul1(x, y)
|
||||
m6_result = self.matmul6(m1_result, a)
|
||||
m2_result = self.matmul2(z, w)
|
||||
m3_result = self.matmul3(m2_result, m6_result)
|
||||
m4_result = self.matmul4(m2_result, m1_result)
|
||||
out = self.matmul5(m3_result, m4_result)
|
||||
|
||||
return out
|
||||
|
||||
size = 8
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
z = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
w = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
a = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x, y, z, w, a)
|
Loading…
Reference in new issue