details quant_config notes

pull/10274/head
yuchaojie 4 years ago
parent 1447879b9c
commit 272ccf2ac6

@ -362,8 +362,9 @@ class Conv2dBnFoldQuantOneConv(Cell):
var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
variance vector. Default: 'ones'.
fake (bool): Whether Conv2dBnFoldQuant Cell adds FakeQuantWithMinMaxObserver. Default: True.
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
both set to default FakeQuantWithMinMaxObserver.
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
generated by compression.quant.create_quant_config method.
Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
Inputs:
@ -573,8 +574,9 @@ class Conv2dBnFoldQuant(Cell):
var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
variance vector. Default: 'ones'.
fake (bool): Whether Conv2dBnFoldQuant Cell adds FakeQuantWithMinMaxObserver. Default: True.
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
both set to default FakeQuantWithMinMaxObserver.
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
generated by compression.quant.create_quant_config method.
Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
freeze_bn (int): The quantization freeze BatchNormal op is according to the global step. Default: 100000.
@ -750,8 +752,9 @@ class Conv2dBnWithoutFoldQuant(Cell):
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Default: 'zeros'.
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
both set to default FakeQuantWithMinMaxObserver.
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
generated by compression.quant.create_quant_config method.
Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
Inputs:
@ -862,8 +865,9 @@ class Conv2dQuant(Cell):
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Default: 'zeros'.
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
both set to default FakeQuantWithMinMaxObserver.
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
generated by compression.quant.create_quant_config method.
Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
Inputs:
@ -967,8 +971,9 @@ class DenseQuant(Cell):
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
activation (Union[str, Cell, Primitive]): The regularization function applied to the output of the layer,
eg. 'relu'. Default: None.
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
both set to default FakeQuantWithMinMaxObserver.
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
generated by compression.quant.create_quant_config method.
Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
Inputs:
@ -1077,8 +1082,9 @@ class ActQuant(_QuantActivation):
ema (bool): The exponential Moving Average algorithm updates min and max. Default: False.
ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999.
fake_before (bool): Whether add fake quantized operation before activation. Default: False.
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
both set to default FakeQuantWithMinMaxObserver.
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
generated by compression.quant.create_quant_config method.
Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
Inputs:
@ -1141,8 +1147,9 @@ class TensorAddQuant(Cell):
Args:
ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999.
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
both set to default FakeQuantWithMinMaxObserver.
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
generated by compression.quant.create_quant_config method.
Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
Inputs:
@ -1192,8 +1199,9 @@ class MulQuant(Cell):
Args:
ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999.
quant_config (QuantConfig): Configs the oberser types and quant configs of weight and activation. Default:
both set to default FakeQuantWithMinMaxObserver.
quant_config (QuantConfig): Configs the oberser types and quant settings of weight and activation. Can be
generated by compression.quant.create_quant_config method.
Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype): Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
Inputs:

Loading…
Cancel
Save