|
|
|
@ -35,12 +35,12 @@ def set_seed(seed):
|
|
|
|
|
random seed.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
seed(Int): the graph-level seed value that to be set.
|
|
|
|
|
seed(Int): the graph-level seed value that to be set. Must be non-negative.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> C.set_seed(10)
|
|
|
|
|
"""
|
|
|
|
|
const_utils.check_int_positive("seed", seed, "set_seed")
|
|
|
|
|
const_utils.check_non_negative("seed", seed, "set_seed")
|
|
|
|
|
global _GRAPH_SEED
|
|
|
|
|
_GRAPH_SEED = seed
|
|
|
|
|
|
|
|
|
@ -56,7 +56,7 @@ def get_seed():
|
|
|
|
|
Interger. The current graph-level seed.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> C.get_seed(10)
|
|
|
|
|
>>> C.get_seed()
|
|
|
|
|
"""
|
|
|
|
|
return _GRAPH_SEED
|
|
|
|
|
|
|
|
|
@ -70,7 +70,7 @@ def normal(shape, mean, stddev, seed=0):
|
|
|
|
|
With float32 data type.
|
|
|
|
|
stddev (Tensor): The deviation σ distribution parameter. With float32 data type.
|
|
|
|
|
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
|
|
|
|
Default: 0.
|
|
|
|
|
Must be non-negative. Default: 0.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev.
|
|
|
|
@ -107,7 +107,7 @@ def uniform(shape, a, b, seed=0, dtype=mstype.float32):
|
|
|
|
|
It defines the maximum possibly generated value. With int32 or float32 data type.
|
|
|
|
|
If dtype is int32, only one number is allowed.
|
|
|
|
|
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
|
|
|
|
Default: 0.
|
|
|
|
|
Must be non-negative. Default: 0.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b.
|
|
|
|
@ -151,7 +151,7 @@ def gamma(shape, alpha, beta, seed=0):
|
|
|
|
|
alpha (Tensor): The alpha α distribution parameter. With float32 data type.
|
|
|
|
|
beta (Tensor): The beta β distribution parameter. With float32 data type.
|
|
|
|
|
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
|
|
|
|
Default: 0.
|
|
|
|
|
Must be non-negative. Default: 0.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of alpha and beta.
|
|
|
|
@ -163,10 +163,6 @@ def gamma(shape, alpha, beta, seed=0):
|
|
|
|
|
>>> beta = Tensor(1.0, mstype.float32)
|
|
|
|
|
>>> output = C.gamma(shape, alpha, beta, seed=5)
|
|
|
|
|
"""
|
|
|
|
|
alpha_dtype = F.dtype(alpha)
|
|
|
|
|
beta_dtype = F.dtype(beta)
|
|
|
|
|
const_utils.check_tensors_dtype_same(alpha_dtype, mstype.float32, "gamma")
|
|
|
|
|
const_utils.check_tensors_dtype_same(beta_dtype, mstype.float32, "gamma")
|
|
|
|
|
const_utils.check_non_negative("seed", seed, "gamma")
|
|
|
|
|
seed1 = get_seed()
|
|
|
|
|
seed2 = seed
|
|
|
|
@ -182,7 +178,7 @@ def poisson(shape, mean, seed=0):
|
|
|
|
|
shape (tuple): The shape of random tensor to be generated.
|
|
|
|
|
mean (Tensor): The mean μ distribution parameter. With float32 data type.
|
|
|
|
|
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
|
|
|
|
Default: 0.
|
|
|
|
|
Must be non-negative. Default: 0.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean.
|
|
|
|
@ -193,8 +189,6 @@ def poisson(shape, mean, seed=0):
|
|
|
|
|
>>> mean = Tensor(1.0, mstype.float32)
|
|
|
|
|
>>> output = C.poisson(shape, mean, seed=5)
|
|
|
|
|
"""
|
|
|
|
|
mean_dtype = F.dtype(mean)
|
|
|
|
|
const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "poisson")
|
|
|
|
|
const_utils.check_non_negative("seed", seed, "poisson")
|
|
|
|
|
seed1 = get_seed()
|
|
|
|
|
seed2 = seed
|
|
|
|
|