parent
2ced65ece3
commit
2a48a1ccc9
@ -0,0 +1,15 @@
|
||||
{
|
||||
"common_dump_settings": {
|
||||
"dump_mode": 0,
|
||||
"path": "/test",
|
||||
"net_name": "Net",
|
||||
"iteration": 0,
|
||||
"input_output": 2,
|
||||
"kernels": ["Default/TensorAdd-op3"],
|
||||
"support_device": [0,1,2,3,4,5,6,7]
|
||||
},
|
||||
"async_dump_settings": {
|
||||
"enable": true,
|
||||
"op_debug_mode": 0
|
||||
}
|
||||
}
|
@ -0,0 +1,15 @@
|
||||
{
|
||||
"common_dump_settings": {
|
||||
"dump_mode": 0,
|
||||
"path": "/test",
|
||||
"net_name": "Net",
|
||||
"iteration": 0,
|
||||
"input_output": 0,
|
||||
"kernels": ["Default/Conv-op12"],
|
||||
"support_device": [0,1,2,3,4,5,6,7]
|
||||
},
|
||||
"e2e_dump_settings": {
|
||||
"enable": true,
|
||||
"trans_flag": false
|
||||
}
|
||||
}
|
@ -0,0 +1,83 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import shutil
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.add = P.TensorAdd()
|
||||
|
||||
def construct(self, x_, y_):
|
||||
return self.add(x_, y_)
|
||||
|
||||
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
|
||||
def change_current_dump_json(file_name, dump_path):
|
||||
with open(file_name, 'r+') as f:
|
||||
data = json.load(f)
|
||||
|
||||
data["common_dump_settings"]["path"] = dump_path
|
||||
with open(file_name, 'w') as f:
|
||||
json.dump(data, f)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_async_dump():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
pwd = os.getcwd()
|
||||
dump_path = pwd + "/dump"
|
||||
change_current_dump_json('async_dump.json', dump_path)
|
||||
os.environ['MINDSPORE_DUMP_CONFIG'] = pwd + "/async_dump.json"
|
||||
device_id = context.get_context("device_id")
|
||||
dump_file_path = pwd + '/dump/device_{}/Net_graph_0/0/0/'.format(device_id)
|
||||
if os.path.isdir(dump_path):
|
||||
shutil.rmtree(dump_path)
|
||||
add = Net()
|
||||
add(Tensor(x), Tensor(y))
|
||||
time.sleep(5)
|
||||
assert len(os.listdir(dump_file_path)) == 1
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_e2e_dump():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
pwd = os.getcwd()
|
||||
dump_path = pwd + "/dump"
|
||||
change_current_dump_json('e2e_dump.json', dump_path)
|
||||
os.environ['MINDSPORE_DUMP_CONFIG'] = pwd + "/e2e_dump.json"
|
||||
device_id = context.get_context("device_id")
|
||||
dump_file_path = pwd + '/dump/Net/device_{}/iteration_1/'.format(device_id)
|
||||
if os.path.isdir(dump_path):
|
||||
shutil.rmtree(dump_path)
|
||||
add = Net()
|
||||
add(Tensor(x), Tensor(y))
|
||||
time.sleep(5)
|
||||
assert len(os.listdir(dump_file_path)) == 5
|
Loading…
Reference in new issue