|
|
|
@ -342,6 +342,14 @@ class ExportToQuantInferNetwork:
|
|
|
|
|
network = self._convert_quant2deploy(network)
|
|
|
|
|
return network
|
|
|
|
|
|
|
|
|
|
def statistic_weight(self, weight):
|
|
|
|
|
out_nums = np.shape(weight)[0]
|
|
|
|
|
sta_metric = np.zeros((out_nums, 2), dtype=np.float32)
|
|
|
|
|
for num in range(out_nums):
|
|
|
|
|
sta_metric[num, 0] = np.min(weight[num])
|
|
|
|
|
sta_metric[num, 1] = np.max(weight[num])
|
|
|
|
|
return np.mean(sta_metric[:, 1]).tolist(), np.mean(sta_metric[:, 0]).tolist()
|
|
|
|
|
|
|
|
|
|
def _get_quant_block(self, cell_core, activation, fake_quant_a_out):
|
|
|
|
|
"""convet network's quant subcell to deploy subcell"""
|
|
|
|
|
# Calculate the scale and zero point
|
|
|
|
@ -357,14 +365,12 @@ class ExportToQuantInferNetwork:
|
|
|
|
|
param_dict["mean"] = self.mean
|
|
|
|
|
param_dict["std_dev"] = self.std_dev
|
|
|
|
|
param_dict["symmetric"] = fake_quant_a_out.symmetric
|
|
|
|
|
if self.is_mindir:
|
|
|
|
|
scale_w, zp_w, param_dict["filter_maxq"], param_dict["filter_minq"] = \
|
|
|
|
|
quant_utils.scale_zp_max_min_from_fake_quant_cell(cell_core.fake_quant_weight, np_type)
|
|
|
|
|
scale_a_out, _, param_dict["output_maxq"], param_dict["output_minq"] = \
|
|
|
|
|
quant_utils.scale_zp_max_min_from_fake_quant_cell(fake_quant_a_out, np_type)
|
|
|
|
|
else:
|
|
|
|
|
scale_w, zp_w = quant_utils.scale_zp_from_fake_quant_cell(cell_core.fake_quant_weight, np_type)
|
|
|
|
|
scale_a_out, _ = quant_utils.scale_zp_from_fake_quant_cell(fake_quant_a_out, np_type)
|
|
|
|
|
|
|
|
|
|
scale_w, zp_w, _, _ = \
|
|
|
|
|
quant_utils.scale_zp_max_min_from_fake_quant_cell(cell_core.fake_quant_weight, np_type)
|
|
|
|
|
scale_a_out, _, param_dict["output_maxq"], param_dict["output_minq"] = \
|
|
|
|
|
quant_utils.scale_zp_max_min_from_fake_quant_cell(fake_quant_a_out, np_type)
|
|
|
|
|
|
|
|
|
|
info = self.quant_info_table.get(w_minq_name, None)
|
|
|
|
|
if info:
|
|
|
|
|
fack_quant_a_in_op, minq_name = info
|
|
|
|
@ -403,6 +409,8 @@ class ExportToQuantInferNetwork:
|
|
|
|
|
weight, bias = quant_utils.fold_batchnorm(weight, cell_core)
|
|
|
|
|
elif isinstance(cell_core, quant.Conv2dBnWithoutFoldQuant):
|
|
|
|
|
weight, bias = quant_utils.without_fold_batchnorm(weight, cell_core)
|
|
|
|
|
if self.is_mindir:
|
|
|
|
|
param_dict["filter_maxq"], param_dict["filter_minq"] = self.statistic_weight(weight)
|
|
|
|
|
weight_b = weight
|
|
|
|
|
bias_b = bias
|
|
|
|
|
# apply the quant
|
|
|
|
@ -467,6 +475,9 @@ class ExportToQuantInferNetwork:
|
|
|
|
|
elif isinstance(subcell, _AddFakeQuantAfterSubCell):
|
|
|
|
|
op = subcell.subcell
|
|
|
|
|
if op.name in ConvertToQuantNetwork.__quant_op_name__ and isinstance(op, ops.Primitive):
|
|
|
|
|
if self.is_mindir:
|
|
|
|
|
op.add_prim_attr('output_maxq', Tensor(subcell.fake_quant_act.maxq.data.asnumpy()))
|
|
|
|
|
op.add_prim_attr('output_minq', Tensor(subcell.fake_quant_act.minq.data.asnumpy()))
|
|
|
|
|
network.__delattr__(name)
|
|
|
|
|
network.__setattr__(name, op)
|
|
|
|
|
change = True
|
|
|
|
|