parent
b0b4fa08b3
commit
2c4cb49a11
@ -0,0 +1,62 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test interface 'all' and 'any' of tensor """
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
|
||||
|
||||
def test_all_and_any_of_tensor_in_graph():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
all_ = x.all()
|
||||
any_ = x.any()
|
||||
all_0 = x.all(0, True)
|
||||
any_0 = x.any(0, True)
|
||||
return all_, any_, all_0, any_0
|
||||
|
||||
net = Net()
|
||||
x = Tensor(np.array([[True, False, False], [True, False, False]]))
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
net(x)
|
||||
|
||||
|
||||
def test_all_and_any_of_tensor_in_pynative():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
all_ = x.all()
|
||||
any_ = x.any()
|
||||
all_0 = x.all(0, True)
|
||||
any_0 = x.any(0, True)
|
||||
return all_, any_, all_0, any_0
|
||||
|
||||
net = Net()
|
||||
x = Tensor(np.array([[True, False, True], [True, False, False]]))
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
ret = net(x)
|
||||
assert ret[0].asnumpy() == np.array(False)
|
||||
assert ret[1].asnumpy() == np.array(True)
|
||||
assert ret[2].asnumpy().shape == np.array([[True, False, False]]).shape
|
||||
assert (ret[2].asnumpy() == np.array([[True, False, False]])).all()
|
||||
assert ret[3].shape == Tensor(np.array([[True, False, True]])).shape
|
||||
assert (ret[3] == Tensor(np.array([[True, False, True]]))).all()
|
Loading…
Reference in new issue