parent
5cf9fabf44
commit
2c6a9c8486
@ -0,0 +1,39 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""FakeQuantWithMinMaxVars op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
fake_quant_with_min_max_vars_op_info = TBERegOp("FakeQuantWithMinMaxVars") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("fake_quant_with_min_max_vars.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("fake_quant_with_min_max_vars") \
|
||||
.partial_flag(True) \
|
||||
.attr("num_bits", "optional", "int", "all") \
|
||||
.attr("narrow_range", "optional", "bool", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.input(1, "min", False, "required", "all") \
|
||||
.input(2, "max", False, "required", "all") \
|
||||
.output(0, "y", True, "required", "all") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(fake_quant_with_min_max_vars_op_info)
|
||||
def _fake_quant_with_min_max_vars_tbe():
|
||||
"""FakeQuantWithMinMaxVar TBE register"""
|
||||
return
|
@ -0,0 +1,43 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""FakeQuantWithMinMaxVars op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
fake_quant_with_min_max_vars_gradient_op_info = TBERegOp("FakeQuantWithMinMaxVarsGradient") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("fake_quant_with_min_max_vars_gradient.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("fake_quant_with_min_max_vars_gradient") \
|
||||
.partial_flag(True) \
|
||||
.attr("num_bits", "optional", "int", "all") \
|
||||
.attr("narrow_range", "optional", "bool", "all") \
|
||||
.input(0, "gradients", False, "required", "all") \
|
||||
.input(1, "x", False, "required", "all") \
|
||||
.input(2, "min", False, "required", "all") \
|
||||
.input(3, "max", False, "required", "all") \
|
||||
.output(0, "backprops_wrt_x", True, "required", "all") \
|
||||
.output(1, "backprops_wrt_min", True, "required", "all") \
|
||||
.output(2, "backprops_wrt_max", True, "required", "all") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(fake_quant_with_min_max_vars_gradient_op_info)
|
||||
def _fake_quant_with_min_max_vars_gradient_tbe():
|
||||
"""FakeQuantWithMinMaxVarsGradient TBE register"""
|
||||
return
|
@ -0,0 +1,39 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""FakeQuantWithMinMaxVarsPerChannel op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
fake_quant_with_min_max_vars_per_channel_op_info = TBERegOp("FakeQuantWithMinMaxVarsPerChannel") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("fake_quant_with_min_max_vars_per_channel.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("fake_quant_with_min_max_vars_per_channel") \
|
||||
.partial_flag(True) \
|
||||
.attr("num_bits", "optional", "int", "all") \
|
||||
.attr("narrow_range", "optional", "bool", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.input(1, "min", False, "required", "all") \
|
||||
.input(2, "max", False, "required", "all") \
|
||||
.output(0, "y", True, "required", "all") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(fake_quant_with_min_max_vars_per_channel_op_info)
|
||||
def _fake_quant_with_min_max_vars_per_channel_tbe():
|
||||
"""FakeQuantWithMinMaxVarsPerChannel TBE register"""
|
||||
return
|
@ -0,0 +1,43 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""FakeQuantWithMinMaxVarsPerChannelGradient op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
fake_quant_with_min_max_vars_per_channel_gradient_op_info = TBERegOp("FakeQuantWithMinMaxVarsPerChannelGradient") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("fake_quant_with_min_max_vars_per_channel_gradient.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("fake_quant_with_min_max_vars_per_channel_gradient") \
|
||||
.partial_flag(True) \
|
||||
.attr("num_bits", "optional", "int", "all") \
|
||||
.attr("narrow_range", "optional", "bool", "all") \
|
||||
.input(0, "gradients", False, "required", "all") \
|
||||
.input(1, "x", False, "required", "all") \
|
||||
.input(2, "min", False, "required", "all") \
|
||||
.input(3, "max", False, "required", "all") \
|
||||
.output(0, "backprops_wrt_x", True, "required", "all") \
|
||||
.output(1, "backprops_wrt_min", True, "required", "all") \
|
||||
.output(2, "backprops_wrt_max", True, "required", "all") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(fake_quant_with_min_max_vars_per_channel_gradient_op_info)
|
||||
def _fake_quant_with_min_max_vars_per_channel_gradient_tbe():
|
||||
"""FakeQuantWithMinMaxVarsPerChannelGradient TBE register"""
|
||||
return
|
Loading…
Reference in new issue