!9514 fix bugs of docs of WithBNNLossCell and Transform

From: @bingyaweng
Reviewed-by: @sunnybeike,@zichun_ye
Signed-off-by: @zichun_ye
pull/9514/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit 2c9c78e95e

@ -43,8 +43,7 @@ class WithBNNLossCell(Cell):
Examples:
>>> net = Net()
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
>>> net_with_criterion_object = WithBNNLossCell(net, loss_fn)
>>> net_with_criterion = net_with_criterion_object()
>>> net_with_criterion = WithBNNLossCell(net, loss_fn)
>>>
>>> batch_size = 2
>>> data = Tensor(np.ones([batch_size, 3, 64, 64]).astype(np.float32) * 0.01)

@ -58,7 +58,7 @@ class TransformToBNN:
>>> net = Net()
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> net_with_loss = WithLossCell(network, criterion)
>>> net_with_loss = WithLossCell(net, criterion)
>>> train_network = TrainOneStepCell(net_with_loss, optim)
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.0001)
"""
@ -115,7 +115,7 @@ class TransformToBNN:
>>> net = Net()
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> net_with_loss = WithLossCell(network, criterion)
>>> net_with_loss = WithLossCell(net, criterion)
>>> train_network = TrainOneStepCell(net_with_loss, optim)
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
>>> train_bnn_network = bnn_transformer.transform_to_bnn_model()
@ -160,7 +160,7 @@ class TransformToBNN:
>>> net = Net()
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> net_with_loss = WithLossCell(network, criterion)
>>> net_with_loss = WithLossCell(net, criterion)
>>> train_network = TrainOneStepCell(net_with_loss, optim)
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
>>> train_bnn_network = bnn_transformer.transform_to_bnn_layer(Dense, DenseReparam)

Loading…
Cancel
Save