|
|
|
@ -58,7 +58,7 @@ class TransformToBNN:
|
|
|
|
|
>>> net = Net()
|
|
|
|
|
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
|
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
|
>>> net_with_loss = WithLossCell(network, criterion)
|
|
|
|
|
>>> net_with_loss = WithLossCell(net, criterion)
|
|
|
|
|
>>> train_network = TrainOneStepCell(net_with_loss, optim)
|
|
|
|
|
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.0001)
|
|
|
|
|
"""
|
|
|
|
@ -115,7 +115,7 @@ class TransformToBNN:
|
|
|
|
|
>>> net = Net()
|
|
|
|
|
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
|
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
|
>>> net_with_loss = WithLossCell(network, criterion)
|
|
|
|
|
>>> net_with_loss = WithLossCell(net, criterion)
|
|
|
|
|
>>> train_network = TrainOneStepCell(net_with_loss, optim)
|
|
|
|
|
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
|
|
|
|
|
>>> train_bnn_network = bnn_transformer.transform_to_bnn_model()
|
|
|
|
@ -160,7 +160,7 @@ class TransformToBNN:
|
|
|
|
|
>>> net = Net()
|
|
|
|
|
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
|
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
|
>>> net_with_loss = WithLossCell(network, criterion)
|
|
|
|
|
>>> net_with_loss = WithLossCell(net, criterion)
|
|
|
|
|
>>> train_network = TrainOneStepCell(net_with_loss, optim)
|
|
|
|
|
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
|
|
|
|
|
>>> train_bnn_network = bnn_transformer.transform_to_bnn_layer(Dense, DenseReparam)
|
|
|
|
|