commit
2d31ae97e8
@ -0,0 +1,61 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
test psnr
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class PSNRNet(nn.Cell):
|
||||
def __init__(self, max_val=1.0):
|
||||
super(PSNRNet, self).__init__()
|
||||
self.net = nn.PSNR(max_val)
|
||||
|
||||
def construct(self, img1, img2):
|
||||
return self.net(img1, img2)
|
||||
|
||||
|
||||
def test_compile_psnr():
|
||||
max_val = 1.0
|
||||
net = PSNRNet(max_val)
|
||||
img1 = Tensor(np.random.random((8, 3, 16, 16)))
|
||||
img2 = Tensor(np.random.random((8, 3, 16, 16)))
|
||||
_executor.compile(net, img1, img2)
|
||||
|
||||
def test_compile_psnr_grayscale():
|
||||
max_val = 255
|
||||
net = PSNRNet(max_val)
|
||||
img1 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
||||
img2 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
||||
_executor.compile(net, img1, img2)
|
||||
|
||||
def test_psnr_max_val_negative():
|
||||
max_val = -1
|
||||
with pytest.raises(ValueError):
|
||||
net = PSNRNet(max_val)
|
||||
|
||||
def test_psnr_max_val_bool():
|
||||
max_val = True
|
||||
with pytest.raises(ValueError):
|
||||
net = PSNRNet(max_val)
|
||||
|
||||
def test_psnr_max_val_zero():
|
||||
max_val = 0
|
||||
with pytest.raises(ValueError):
|
||||
net = PSNRNet(max_val)
|
@ -0,0 +1,95 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
test ssim
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class SSIMNet(nn.Cell):
|
||||
def __init__(self, max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03):
|
||||
super(SSIMNet, self).__init__()
|
||||
self.net = nn.SSIM(max_val, filter_size, filter_sigma, k1, k2)
|
||||
|
||||
def construct(self, img1, img2):
|
||||
return self.net(img1, img2)
|
||||
|
||||
|
||||
def test_compile():
|
||||
net = SSIMNet()
|
||||
img1 = Tensor(np.random.random((8, 3, 16, 16)))
|
||||
img2 = Tensor(np.random.random((8, 3, 16, 16)))
|
||||
_executor.compile(net, img1, img2)
|
||||
|
||||
def test_compile_grayscale():
|
||||
max_val = 255
|
||||
net = SSIMNet(max_val = max_val)
|
||||
img1 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
||||
img2 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
||||
_executor.compile(net, img1, img2)
|
||||
|
||||
def test_ssim_max_val_negative():
|
||||
max_val = -1
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(max_val)
|
||||
|
||||
def test_ssim_max_val_bool():
|
||||
max_val = True
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(max_val)
|
||||
|
||||
def test_ssim_max_val_zero():
|
||||
max_val = 0
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(max_val)
|
||||
|
||||
def test_ssim_filter_size_float():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_size=1.1)
|
||||
|
||||
def test_ssim_filter_size_zero():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_size=0)
|
||||
|
||||
def test_ssim_filter_sigma_zero():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_sigma=0.0)
|
||||
|
||||
def test_ssim_filter_sigma_negative():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_sigma=-0.1)
|
||||
|
||||
def test_ssim_k1_k2_wrong_value():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=1.1)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=1.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=0.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=-1.0)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=1.1)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=1.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=0.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=-1.0)
|
Loading…
Reference in new issue