parent
09ee838320
commit
2e2c01d6f0
@ -1,37 +0,0 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/relu_grad_impl.cuh"
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
__global__ void CalReLUGradKernel(int size, T *dy, T *y, T *dx) {
|
||||
for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
dx[pos] = y[pos] > static_cast<T>(0) ? dy[pos] : static_cast<T>(0);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalReLUGrad(int size, T *dy, T *y, T *dx, cudaStream_t cuda_stream) {
|
||||
CalReLUGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dy, y, dx);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalReLUGrad(int size, float *dy, float *y, float *dx, cudaStream_t cuda_stream);
|
||||
template void CalReLUGrad(int size, half *dy, half *y, half *dx, cudaStream_t cuda_stream);
|
||||
template void CalReLUGrad(int size, int8_t *dy, int8_t *y, int8_t *dx, cudaStream_t cuda_stream);
|
||||
template void CalReLUGrad(int size, int32_t *dy, int32_t *y, int32_t *dx, cudaStream_t cuda_stream);
|
||||
template void CalReLUGrad(int size, int64_t *dy, int64_t *y, int64_t *dx, cudaStream_t cuda_stream);
|
@ -1,23 +0,0 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_GRAD_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_GRAD_H_
|
||||
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
template <typename T>
|
||||
void CalReLUGrad(int input_size, T *dy, T *y, T *dx, cudaStream_t cuda_stream);
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_GRAD_H_
|
@ -0,0 +1,38 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/relu_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ReLUGpuFwdKernel, double)
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ReLUGpuFwdKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
ReLUGpuFwdKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ReLUGpuFwdKernel, int64_t)
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ReLUGpuFwdKernel, int32_t)
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
|
||||
ReLUGpuFwdKernel, int16_t)
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), ReLUGpuFwdKernel,
|
||||
int8_t)
|
||||
MS_REG_GPU_KERNEL_ONE(ReLU, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
ReLUGpuFwdKernel, uint8_t)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,98 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_RELU_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_RELU_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/relu_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class ReLUGpuFwdKernel : public GpuKernel {
|
||||
public:
|
||||
ReLUGpuFwdKernel() { ResetResource(); }
|
||||
~ReLUGpuFwdKernel() override {}
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
if (is_null_input_) {
|
||||
return true;
|
||||
}
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
const int size = input_size_ / sizeof(T);
|
||||
CalReLU(size, input, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "Argument number is " << input_num << ", but ReLUGpuFwdKernel needs 1.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shape);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "ReLUGpuFwdKernel input is null.";
|
||||
}
|
||||
size_t size = 1;
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
size *= input_shape[i];
|
||||
}
|
||||
input_size_ = size * sizeof(T);
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
is_null_input_ = false;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
input_size_ = 0;
|
||||
workspace_size_ = 0;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(input_size_);
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
bool is_null_input_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
size_t input_size_;
|
||||
size_t workspace_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_RELU_GPU_KERNEL_H_
|
@ -1,84 +0,0 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
|
||||
class NetReluGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetReluGrad, self).__init__()
|
||||
self.rekuGrad = G.ReluGrad()
|
||||
|
||||
def construct(self, x, dy):
|
||||
return self.rekuGrad(dy, x)
|
||||
|
||||
|
||||
def relu_grad_base(dtype):
|
||||
x = Tensor(np.array([[[[-1, 1, 1],
|
||||
[1, -1, 1],
|
||||
[1, 1, -1]]]]).astype(dtype))
|
||||
dy = Tensor(np.array([[[[1, 0, 1],
|
||||
[0, 1, 0],
|
||||
[1, 1, 1]]]]).astype(dtype))
|
||||
expect = np.array([[[[0, 0, 1,], [0, 0, 0,], [1, 1, 0.]]]]).astype(np.dtype)
|
||||
error = np.ones(shape=[3, 3]) * 1.0e-6
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
relu_grad = NetReluGrad()
|
||||
output = relu_grad(x, dy)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert output.asnumpy().dtype == dtype
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_relu_grad_float16():
|
||||
relu_grad_base(np.float16)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_relu_grad_float32():
|
||||
relu_grad_base(np.float32)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_relu_grad_int8():
|
||||
relu_grad_base(np.int8)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_relu_grad_int32():
|
||||
relu_grad_base(np.int32)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_relu_grad_int64():
|
||||
relu_grad_base(np.int64)
|
Loading…
Reference in new issue