|
|
|
@ -1427,17 +1427,6 @@ def random_color(img, degrees):
|
|
|
|
|
if not is_pil(img):
|
|
|
|
|
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
|
|
|
|
|
|
|
|
|
|
if isinstance(degrees, (list, tuple)):
|
|
|
|
|
if len(degrees) != 2:
|
|
|
|
|
raise ValueError("Degrees must be a sequence length 2.")
|
|
|
|
|
if degrees[0] < 0:
|
|
|
|
|
raise ValueError("Degree value must be non-negative.")
|
|
|
|
|
if degrees[0] > degrees[1]:
|
|
|
|
|
raise ValueError("Degrees should be in (min,max) format. Got (max,min).")
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
raise TypeError("Degrees must be a sequence in (min,max) format.")
|
|
|
|
|
|
|
|
|
|
v = (degrees[1] - degrees[0]) * random.random() + degrees[0]
|
|
|
|
|
return ImageEnhance.Color(img).enhance(v)
|
|
|
|
|
|
|
|
|
@ -1459,17 +1448,6 @@ def random_sharpness(img, degrees):
|
|
|
|
|
if not is_pil(img):
|
|
|
|
|
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
|
|
|
|
|
|
|
|
|
|
if isinstance(degrees, (list, tuple)):
|
|
|
|
|
if len(degrees) != 2:
|
|
|
|
|
raise ValueError("Degrees must be a sequence length 2.")
|
|
|
|
|
if degrees[0] < 0:
|
|
|
|
|
raise ValueError("Degree value must be non-negative.")
|
|
|
|
|
if degrees[0] > degrees[1]:
|
|
|
|
|
raise ValueError("Degrees should be in (min,max) format. Got (max,min).")
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
raise TypeError("Degrees must be a sequence in (min,max) format.")
|
|
|
|
|
|
|
|
|
|
v = (degrees[1] - degrees[0]) * random.random() + degrees[0]
|
|
|
|
|
return ImageEnhance.Sharpness(img).enhance(v)
|
|
|
|
|
|
|
|
|
@ -1537,6 +1515,7 @@ def uniform_augment(img, transforms, num_ops):
|
|
|
|
|
Uniformly select and apply a number of transforms sequentially from
|
|
|
|
|
a list of transforms. Randomly assigns a probability to each transform for
|
|
|
|
|
each image to decide whether apply it or not.
|
|
|
|
|
All the transforms in transform list must have the same input/output data type.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
img: Image to be applied transformation.
|
|
|
|
@ -1545,23 +1524,14 @@ def uniform_augment(img, transforms, num_ops):
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
img, Transformed image.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if transforms is None:
|
|
|
|
|
raise ValueError("transforms is not provided.")
|
|
|
|
|
if not isinstance(transforms, list):
|
|
|
|
|
raise ValueError("The transforms needs to be a list.")
|
|
|
|
|
|
|
|
|
|
if not isinstance(num_ops, int):
|
|
|
|
|
raise ValueError("Number of operations should be a positive integer.")
|
|
|
|
|
if num_ops < 1:
|
|
|
|
|
raise ValueError("Number of operators should equal or greater than one.")
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
for _ in range(num_ops):
|
|
|
|
|
AugmentOp = random.choice(transforms)
|
|
|
|
|
op_idx = np.random.choice(len(transforms), size=num_ops, replace=False)
|
|
|
|
|
for idx in op_idx:
|
|
|
|
|
AugmentOp = transforms[idx]
|
|
|
|
|
pr = random.random()
|
|
|
|
|
if random.random() < pr:
|
|
|
|
|
img = AugmentOp(img.copy())
|
|
|
|
|
transforms.remove(AugmentOp)
|
|
|
|
|
|
|
|
|
|
return img
|
|
|
|
|