!13121 expander lamb_apply_optimizer_assign

From: @wenfangpei
Reviewed-by: 
Signed-off-by:
pull/13121/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 2fadad0875

@ -35,3 +35,4 @@ from .sqrt_grad import SqrtGrad
from .square import Square
from .tanh_grad import TanhGrad
from .tile import Tile
from .lamb_apply_optimizer_assign import LambApplyOptimizerAssign

@ -0,0 +1,76 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===========================================================================
"""generate json desc for LambApplyOptimizerAssign"""
from ._utils import Expander, ExpanderInfoValidator as VLD
@VLD.check_all_formats_same
class LambApplyOptimizerAssign(Expander):
"""LambApplyOptimizerAssign expander"""
def _expand(self, graph_builder):
[grad, inputv, inputm, input_param, beta_1, one_minus_beta_1, beta_2, one_minus_beta_2, epsilon, steps,
do_use_weight, weight_decay_rate] = self.inputs
# next_v
square_grad = graph_builder.emit('Mul', [grad, grad])
mul_3_result = graph_builder.emit('Mul', [square_grad, one_minus_beta_2])
mul_2_result = graph_builder.emit('Mul', [inputv, beta_2])
next_v = graph_builder.emit('Add', [mul_2_result, mul_3_result])
# next_m
mul_0_result = graph_builder.emit('Mul', [inputm, beta_1])
mul_1_result = graph_builder.emit('Mul', [grad, one_minus_beta_1])
next_m = graph_builder.emit('Add', [mul_0_result, mul_1_result])
shape = next_m.shape
const_one = graph_builder.value(beta_2.dtype, 1)
beta_1_tensor = graph_builder.emit('BroadcastTo', [beta_1], attrs={'shape': shape})
beta_2_tensor = graph_builder.emit('BroadcastTo', [beta_2], attrs={'shape': shape})
# pow
beta_1_log = graph_builder.emit('Log', [beta_1_tensor])
mul_res_1 = graph_builder.emit('Mul', [beta_1_log, steps])
beta_1_steps = graph_builder.emit('Exp', [mul_res_1])
neg_beta_1_step = graph_builder.emit('Neg', [beta_1_steps])
beta1_correction = graph_builder.emit('Add', [neg_beta_1_step, const_one])
next_m_unbiased = graph_builder.emit('RealDiv', [next_m, beta1_correction])
# pow
beta_2_log = graph_builder.emit('Log', [beta_2_tensor])
mul_res_2 = graph_builder.emit('Mul', [beta_2_log, steps])
beta_2_steps = graph_builder.emit('Exp', [mul_res_2])
neg_beta_2_step = graph_builder.emit('Neg', [beta_2_steps])
beta2_correction = graph_builder.emit('Add', [neg_beta_2_step, const_one])
next_v_unbiased = graph_builder.emit('RealDiv', [next_v, beta2_correction])
# update
sqrt_next_v = graph_builder.emit('Sqrt', [next_v_unbiased])
add_2_result = graph_builder.emit('Add', [sqrt_next_v, epsilon])
update = graph_builder.emit('RealDiv', [next_m_unbiased, add_2_result])
# update do_use_weight_decay
do_use_weight_mul = graph_builder.emit('Mul', [input_param, weight_decay_rate])
do_use_weight_decay = graph_builder.emit('Mul', [do_use_weight_mul, do_use_weight])
update = graph_builder.emit('Add', [do_use_weight_decay, update])
res = [update, next_v, next_m]
return res

@ -44,6 +44,7 @@ std::unordered_set<PrimitivePtr> GetExpandOps() {
prim::kPrimTile,
prim::kPrimSqrtGrad,
prim::kPrimClipByNormNoDivSum,
prim::kLambApplyOptimizerAssign,
#elif ENABLE_GPU
prim::kPrimBiasAdd,
prim::kPrimBiasAddGrad,

@ -298,7 +298,7 @@ inline const PrimitivePtr kPrimClipByNormNoDivSum = std::make_shared<Primitive>(
inline const PrimitivePtr kPrimTensorMove = std::make_shared<Primitive>("TensorMove");
inline const PrimitivePtr kPrimL2Normalize = std::make_shared<Primitive>("L2Normalize");
inline const PrimitivePtr kPrimCustomExtractFeatures = std::make_shared<Primitive>("CustomExtractFeatures");
inline const PrimitivePtr kLambApplyOptimizerAssign = std::make_shared<Primitive>("LambApplyOptimizerAssign");
// Comm ops
inline const PrimitivePtr kPrimMirror = std::make_shared<Primitive>("_MirrorOperator");
inline const PrimitivePtr kPrimMirrorMiniStep = std::make_shared<Primitive>("_MirrorMiniStepOperator");

@ -0,0 +1,72 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.lamb_apply_optimizer_assign = P.LambApplyOptimizerAssign()
def construct(self, grad, inputv, inputm, input_param, beta_1, one_minus_beta_1, beta_2, one_minus_beta_2, epsilon,
steps, do_use_weight, weight_decay_rate):
return self.lamb_apply_optimizer_assign(grad, inputv, inputm, input_param, beta_1, one_minus_beta_1, beta_2,
one_minus_beta_2, epsilon, steps, do_use_weight, weight_decay_rate)
def get_output(grad, inputv, inputm, input_param, beta_1, one_minus_beta_1, beta_2, one_minus_beta_2, epsilon, steps,
do_use_weight, weight_decay_rate, enable_graph_kernel=False):
context.set_context(enable_graph_kernel=enable_graph_kernel)
opt = Net()
output = opt(Tensor(grad), Tensor(inputv), Tensor(inputm), Tensor(input_param), Tensor(beta_1),
Tensor(one_minus_beta_1), Tensor(beta_2), Tensor(one_minus_beta_2), Tensor(epsilon), Tensor(steps),
Tensor(do_use_weight), Tensor(weight_decay_rate))
return output
def lamb_apply_optimizer_assign():
grad = np.array([0.01, 0.03, 0.05]).astype(np.float32)
inputv = np.array([1.2, 3.4, 5.6]).astype(np.float32)
inputm = np.array([0.11, 0.33, 0.55]).astype(np.float32)
input_param = np.array([1, 3, 5]).astype(np.float32)
beta_1 = np.array([0.9]).astype(np.float32)
beta_2 = np.array([0.999]).astype(np.float32)
one_minus_beta_1 = (np.array([1.0]) - np.array([0.9])).astype(np.float32)
one_minus_beta_2 = (np.array([1.0]) - np.array([0.999])).astype(np.float32)
epsilon = np.array([1e-6]).astype(np.float32)
steps = np.array([10]).astype(np.float32)
do_use_weight = np.array([1]).astype(np.float32)
weight_decay_rate = np.array([0.021]).astype(np.float32)
expect = get_output(grad, inputv, inputm, input_param, beta_1, one_minus_beta_1, beta_2, one_minus_beta_2, epsilon,
steps, do_use_weight, weight_decay_rate, False)
output = get_output(grad, inputv, inputm, input_param, beta_1, one_minus_beta_1, beta_2, one_minus_beta_2, epsilon,
steps, do_use_weight, weight_decay_rate, True)
e1, e2, e3 = list(expect)
o1, o2, o3 = list(output)
assert np.allclose(o1.asnumpy(), e1.asnumpy())
assert np.allclose(o2.asnumpy(), e2.asnumpy())
assert np.allclose(o3.asnumpy(), e3.asnumpy())
def test_lamb_apply_optimizer_assign_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
lamb_apply_optimizer_assign()
Loading…
Cancel
Save